DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Thermomechanical Analysis and Optimization of Cryogenic Liquid Rocket Engines

Kuhl, D. and Riccius, J. and Haidn, O. (2002) Thermomechanical Analysis and Optimization of Cryogenic Liquid Rocket Engines. Journal of Propulsion and Power, 18 (4), pp. 835-846.

Full text not available from this repository.


A coupled finite element fluid-structure interaction analysis of regeneratively cooled rocket combustion chambers, which allows the computation of the coolant flow and the heat conduction between the coolant and the combustion chamber structure, is presented. Furthermore, the resulting elasto-plastic deformation of the combustion chamber under cyclic thermal and mechanical loading is analyzed. The developed solution strategy is applied to the prediction of the heat transfer and thermomechanical load-induced deformation process of the European rocket engine Vulcain. Based on the results, the failure mechanism of the combustion chamber and its governing parameters are identified. It is demonstrated that this mechanism significantly reduces the lifetime of the rocket engine. Besides the conceptual design by the engineer, a mathematical optimization procedure based on the finite element model of the combustion chamber is investigated. This optimization method allows the improvement of an initial design with respect to a finite number of design variables such that the stress, plastic strain, or temperature levels are decreased, and accordingly. the lifetime will be increased.

Item URL in elib:https://elib.dlr.de/1580/
Document Type:Article
Additional Information: LIDO-Berichtsjahr=2002,
Title:Thermomechanical Analysis and Optimization of Cryogenic Liquid Rocket Engines
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
Kuhl, D.Ruhr-University, BochumUNSPECIFIED
Journal or Publication Title:Journal of Propulsion and Power
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In ISI Web of Science:Yes
Page Range:pp. 835-846
HGF - Research field:Aeronautics, Space and Transport (old)
HGF - Program:Space (old)
HGF - Program Themes:W RP - Raumtransport
DLR - Research area:Space
DLR - Program:W RP - Raumtransport
DLR - Research theme (Project):E - no assignment
Location: Lampoldshausen
Institutes and Institutions:Institute of Space Propulsion
Deposited By: Lohmiller, Monika
Deposited On:16 Sep 2005
Last Modified:06 Jan 2010 13:59

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.