Risch, David Lennart (2021) Vision-guided Grasping of Arbitrary Objects through Experience-based Search Optimization. DLR-Interner Bericht. DLR-IB-RM-OP-2022-18. Bachelorarbeit. Duale Hochschule Baden-Württemberg Mannheim. 96 S.
PDF
15MB |
Kurzfassung
A desired capability for human-robot collaboration is the hand over of tools and object parts in a functional, effective way. Therefore, a robot has to grasp objects at specific spots, also called functional grasps. In this thesis an approach for such functional grasping of nearly unknown, arbitrary objects is presented. A differentiating factor to other approaches is the lack of a requirement for 3D models of the objects. Given a camera mounted on the robot's end-effector, the grasping position is defined by a single target image with human guidance. During execution, an iterative search for the target viewing angle is performed, based on an appearance similarity measure generated by an Auto-Encoder (AE) specifically trained to encode general object rotation. Further, a process for the fusion of data from previous grasping attempts is presented. This increases robustness and search efficiency by utilizing experience from previous executions. Additionally, a detection module is integrated, which enables the grasping of the target object in cluttered scenes. The developed method is evaluated in a simulation and on a real robotic platform. It can be shown, that the presented method is able to robustly find the pre-defined target orientation to grasp the objects.
elib-URL des Eintrags: | https://elib.dlr.de/148638/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Berichtsreihe (DLR-Interner Bericht, Bachelorarbeit) | ||||||||
Titel: | Vision-guided Grasping of Arbitrary Objects through Experience-based Search Optimization | ||||||||
Autoren: |
| ||||||||
Datum: | September 2021 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Seitenanzahl: | 96 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | human-robot collaboration, grasping, autoencoder, next-best-view sampling | ||||||||
Institution: | Duale Hochschule Baden-Württemberg Mannheim | ||||||||
Abteilung: | Fakultät Technik | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Robotik | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||
Hinterlegt von: | Risch, David Lennart | ||||||||
Hinterlegt am: | 02 Feb 2022 19:21 | ||||||||
Letzte Änderung: | 08 Feb 2022 18:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags