elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Analysis and comparison of publicly available databases for urban mobility applications

Bousdar Ahmed, Dina und Munoz Diaz-Ropero, Estefania (2021) Analysis and comparison of publicly available databases for urban mobility applications. In: 2021 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2021. Indoor Positioning and Indoor Navigation (IPIN) Conference, 2021-11-29 - 2021-12-02, Lloret de Mar, Spain. ISBN 978-166540402-0. ISSN 2162-7347.

[img] PDF
1MB

Kurzfassung

The challenges of multimodal applications can be addressed with machine learning or artificial intelligence methods, for which a database with large amounts of good quality data and ground truth is crucial. Since generating and publishing such a database is a challenging endeavour, there are only a handful of them available for the community to be used. In this article, we want to analyze three of these databases and compare them. We assess these databases regarding the ground truth that they provide, e.g. labels of the means of transport, and assess how much unlabelled data they publish. We compare these databases regarding the number of hours of data, and how these hours are distributed among different means of transport and activities. Finally, we assess the data in each public database regarding crucial aspects such as the stability of the sampling frequency, the minimum sampling frequency required to observe certain means of transport or activities and, how much lost data these databases have. One of our main conclusions is that accurately labelling data and ensuring a stable sampling frequency are two of the biggest challenges to be addressed when generating a public database for urban mobility.

elib-URL des Eintrags:https://elib.dlr.de/148515/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Analysis and comparison of publicly available databases for urban mobility applications
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bousdar Ahmed, DinaDina.BousdarAhmed (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Munoz Diaz-Ropero, EstefaniaEstefania.Munoz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:30 November 2021
Erschienen in:2021 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2021
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
ISSN:2162-7347
ISBN:978-166540402-0
Status:veröffentlicht
Stichwörter:Machine learning, artificial intelligence, data mining, smartphone, passenger, dataset, vehicle, localization, detection, means of transport, transport mode
Veranstaltungstitel:Indoor Positioning and Indoor Navigation (IPIN) Conference
Veranstaltungsort:Lloret de Mar, Spain
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:29 November 2021
Veranstaltungsende:2 Dezember 2021
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - UrMo Digital (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Nachrichtensysteme
Hinterlegt von: Bousdar Ahmed, Dina
Hinterlegt am:07 Feb 2022 14:25
Letzte Änderung:24 Apr 2024 20:46

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.