elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Robust Multi-Seasonal Ice Classification from High Resolution X-Band SAR

Kortum, Karl und Singha, Suman und Spreen, Gunnar (2022) Robust Multi-Seasonal Ice Classification from High Resolution X-Band SAR. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 4408512. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3144731. ISSN 0196-2892.

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
16MB

Offizielle URL: https://doi.org/10.1109/TGRS.2022.3144731

Kurzfassung

Automated solutions for sea ice type classification from synthetic aperture (SAR) imagery offer an opportunity to monitor sea ice, unimpeded by cloud cover or the arctic night. However, there is a common struggle to obtain accurate classifications year round; particularly in the melt and freeze-up seasons. During these seasons, the radar backscatter signal is affected by wet snow cover, obscuring information about underlying ice types. By using additional spatiotemporal contextual data and a combination of convolutional neural networks and a dense conditional random field, we can mitigate these problems and obtain a single classifier which is able to classify accurately at 3.5 m spatial resolution for five different classes of sea ice surface from October to May. During the near year-long drift of the MOSAiC expedition we collected satellite scenes of the same patch of Arctic pack ice with X-Band SAR with a revisit-time of less than a day on average. Combined with in-situ observations of the local ice properties this offers up the unprecedented opportunity to perform a detailed and quantitative assessment of the robustness of our classifier for level, deformed and heavily deformed ice. For these three classes, we can perform accurate classification with a probability > 95% and calculate a lower bound for the robustness between 85% and 88%.

elib-URL des Eintrags:https://elib.dlr.de/148457/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:K. Kortum, S. Singha and G. Spreen, "Robust Multiseasonal Ice Classification From High-Resolution X-Band SAR," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-12, 2022, Art no. 4408512, doi: 10.1109/TGRS.2022.3144731.
Titel:Robust Multi-Seasonal Ice Classification from High Resolution X-Band SAR
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kortum, Karlkarl.kortum (at) dlr.dehttps://orcid.org/0000-0002-8418-6484NICHT SPEZIFIZIERT
Singha, SumanSuman.Singha (at) dlr.dehttps://orcid.org/0000-0002-1880-6868NICHT SPEZIFIZIERT
Spreen, GunnarInstitute of Environmental Physics, University of Bremen, Bremen, Germany (gunnar.spreen (at) uni-bremen.de)https://orcid.org/0000-0003-0165-8448NICHT SPEZIFIZIERT
Datum:20 Januar 2022
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:60
DOI:10.1109/TGRS.2022.3144731
Seitenbereich:Seite 4408512
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Sea ice, classification, ice type, SAR, X-band, high resolution, MOSAiC, oceanography, robustness, deep learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - SAR-Methoden
Standort: Bremen , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Kaps, Ruth
Hinterlegt am:24 Jan 2022 13:39
Letzte Änderung:14 Mär 2023 16:26

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.