Kortum, Karl und Singha, Suman und Spreen, Gunnar (2022) Robust Multi-Seasonal Ice Classification from High Resolution X-Band SAR. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 4408512. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3144731. ISSN 0196-2892.
PDF
- Preprintversion (eingereichte Entwurfsversion)
16MB |
Offizielle URL: https://doi.org/10.1109/TGRS.2022.3144731
Kurzfassung
Automated solutions for sea ice type classification from synthetic aperture (SAR) imagery offer an opportunity to monitor sea ice, unimpeded by cloud cover or the arctic night. However, there is a common struggle to obtain accurate classifications year round; particularly in the melt and freeze-up seasons. During these seasons, the radar backscatter signal is affected by wet snow cover, obscuring information about underlying ice types. By using additional spatiotemporal contextual data and a combination of convolutional neural networks and a dense conditional random field, we can mitigate these problems and obtain a single classifier which is able to classify accurately at 3.5 m spatial resolution for five different classes of sea ice surface from October to May. During the near year-long drift of the MOSAiC expedition we collected satellite scenes of the same patch of Arctic pack ice with X-Band SAR with a revisit-time of less than a day on average. Combined with in-situ observations of the local ice properties this offers up the unprecedented opportunity to perform a detailed and quantitative assessment of the robustness of our classifier for level, deformed and heavily deformed ice. For these three classes, we can perform accurate classification with a probability > 95% and calculate a lower bound for the robustness between 85% and 88%.
elib-URL des Eintrags: | https://elib.dlr.de/148457/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | K. Kortum, S. Singha and G. Spreen, "Robust Multiseasonal Ice Classification From High-Resolution X-Band SAR," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-12, 2022, Art no. 4408512, doi: 10.1109/TGRS.2022.3144731. | ||||||||||||||||
Titel: | Robust Multi-Seasonal Ice Classification from High Resolution X-Band SAR | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 20 Januar 2022 | ||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 60 | ||||||||||||||||
DOI: | 10.1109/TGRS.2022.3144731 | ||||||||||||||||
Seitenbereich: | Seite 4408512 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Sea ice, classification, ice type, SAR, X-band, high resolution, MOSAiC, oceanography, robustness, deep learning | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||||||
Standort: | Bremen , Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Kaps, Ruth | ||||||||||||||||
Hinterlegt am: | 24 Jan 2022 13:39 | ||||||||||||||||
Letzte Änderung: | 14 Mär 2023 16:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags