López Díaz, María und Kehlbacher, Ariane und Hellekes, Jens und Merkle, Nina und Henry, Corentin und Heinrichs, Matthias (2022) Detecting and Estimating On-street Parking Areas from Aerial Images. Transportation Research Board (TRB) 101st Annual Meeting, 2022-01-09 - 2022-01-13, Washington, D.C., USA.
PDF
62MB |
Kurzfassung
Parking is an essential part of transportation systems and urban planning, but the availability of data on parking is limited and therefore posing problems, for example, estimating search times for parking spaces in travel demand models. This paper presents an on-street parking area prediction model developed using remote sensing and open geospatial data of the German city of Brunswick. Neural networks are used to segment the aerial images in parking and street areas. To enhance the robustness of this detection, multiple predictions over same regions are fused. We enrich this information with publicly available data and formulate a Bayesian inference model to predict the parking area per street meter. The model is estimated and validated using detected parking areas from the aerial images. We find that the prediction accuracy of the parking area model at mid to high levels of parking area per street meter is good, but at lower levels uncertainty increases. Using a Bayesian inference model allows the uncertainty of the prediction to be passed on to subsequent applications to track error propagation. Since only open source data serve as input for the prediction model, a transfer to structurally similar regions, for which no aerial images are available, is possible. The model can be used in a wide range of applications like travel demand models, parking regulation and urban planning.
elib-URL des Eintrags: | https://elib.dlr.de/148454/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
Titel: | Detecting and Estimating On-street Parking Areas from Aerial Images | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | aerial imagery, deep learning, image segmentation, parking space detection, on-street parking, Bayesian inference, OpenStreetMap | ||||||||||||||||||||||||||||
Veranstaltungstitel: | Transportation Research Board (TRB) 101st Annual Meeting | ||||||||||||||||||||||||||||
Veranstaltungsort: | Washington, D.C., USA | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 9 Januar 2022 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 13 Januar 2022 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Energie und Verkehr (alt), V - UrMo Digital (alt), R - Optische Fernerkundung | ||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof , Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrsforschung > Mobilität und urbane Entwicklung Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||||||
Hinterlegt von: | López Díaz, María | ||||||||||||||||||||||||||||
Hinterlegt am: | 09 Feb 2022 11:14 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags