Torens, Christoph und Durak, Umut und Dauer, Johann C. (2022) Guidelines and Regulatory Framework for Machine Learning in Aviation. In: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022. AIAA SCITECH 2022 Forum, 2022-01-03 - 2022-01-07, San Diego, California. doi: 10.2514/6.2022-1132. ISBN 978-162410631-6.
PDF
- Nur DLR-intern zugänglich
921kB |
Offizielle URL: https://arc.aiaa.org/doi/10.2514/6.2022-1132
Kurzfassung
Automation and eventually autonomy are regarded as the enabler for upcoming Urban Air Mobility (UAM) / Advanced Air Mobility segment. Only they could enable unprecedented opportunities for scaling drones and air taxis to a large number of vehicles, making the services available for everyone. Artificial Intelligence (AI) in general, Machine Learning (ML) in particular promise a huge leap towards achieving high levels of automation and further autonomy. Nevertheless, the safety concerns and challenges regarding compliance to the existing software standards are more pressing then ever before. Existing regulatory framework for hardware and software items fail to provide adequate acceptable means of compliance for AI-based systems. Hence, there are currently a number of ongoing efforts to update and augment the current standards. This paper will give an overview of the existing and upcoming regulatory framework for certifying AI-based systems. It will elaborate the EASA documents, artificial intelligence roadmap, Concepts of Design Assurance for Neural Networks (CoDANN), CoDANN II, as well as the concept paper on first usable guidance for level I machine learning applications. Furthermore, suitable guidance from EuroCAE, RTCA, ASTM and AVSI will be discussed.
elib-URL des Eintrags: | https://elib.dlr.de/148340/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Guidelines and Regulatory Framework for Machine Learning in Aviation | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 3 Januar 2022 | ||||||||||||||||
Erschienen in: | AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.2514/6.2022-1132 | ||||||||||||||||
ISBN: | 978-162410631-6 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | guidelines, standards, machine learning, certification, artificial intelligence, safety-critical, aviation | ||||||||||||||||
Veranstaltungstitel: | AIAA SCITECH 2022 Forum | ||||||||||||||||
Veranstaltungsort: | San Diego, California | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 3 Januar 2022 | ||||||||||||||||
Veranstaltungsende: | 7 Januar 2022 | ||||||||||||||||
Veranstalter : | AIAA SCITECH Forum | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Unbemannte Flugsysteme | ||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||
Institute & Einrichtungen: | Institut für Flugsystemtechnik > Unbemannte Luftfahrzeuge Institut für Flugsystemtechnik | ||||||||||||||||
Hinterlegt von: | Torens, Christoph | ||||||||||||||||
Hinterlegt am: | 01 Feb 2022 13:49 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags