Behrends, Holger and Millinger, Dietmar and Weihs-Sedivy, Werner and Javornik, Anze and Roolfs, Gerold and Geissendörfer, Stefan (2022) Analysis Of Residual Current Flows In Inverter Based Energy Systems Using Machine Learning Approaches. Energies, 15 (2). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en15020582. ISSN 1996-1073.
![]() |
PDF
- Published version
1MB |
Official URL: https://www.mdpi.com/1996-1073/15/2/582
Abstract
Faults and unintended conditions in grid-connected photovoltaic systems often cause a change of the residual current. This article describes a novel machine learning based approach to detecting anomalies in the residual current of a photovoltaic system. It can be used to detect faults or critical states at an early stage and extends conventional threshold-based detection methods. For this study, a power-hardware-in-the-loop approach was carried out, in which typical faults have been injected under ideal and realistic operating conditions. The investigation shows that faults in a photovoltaic converter system cause a unique behaviour of the residual current and fault patterns can be detected and identified by using pattern recognition and variational autoencoder machine learning algorithms. In this context, it was found that the residual current is not only affected by malfunctions of the system, but also by volatile external influences. One of the main challenges here is to separate the regular residual currents caused by the interferences from those caused by faults. Compared to conventional methods, which respond to absolute changes in residual current, the two machine learning models detect faults that do not affect the absolute value of the residual current.
Item URL in elib: | https://elib.dlr.de/148316/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Analysis Of Residual Current Flows In Inverter Based Energy Systems Using Machine Learning Approaches | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 14 January 2022 | ||||||||||||||||||||||||||||
Journal or Publication Title: | Energies | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 15 | ||||||||||||||||||||||||||||
DOI: | 10.3390/en15020582 | ||||||||||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||||||
Series Name: | Artificial Intelligence and Smart Energy | ||||||||||||||||||||||||||||
ISSN: | 1996-1073 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | renewable energies; photovoltaic; predictive maintenance; reliability; anomaly detection; residual current; machine learning; reconstruction error | ||||||||||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||||||||||
HGF - Program: | Energy System Design | ||||||||||||||||||||||||||||
HGF - Program Themes: | Digitalization and System Technology | ||||||||||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||||||||||
DLR - Program: | E SY - Energy System Technology and Analysis | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | E - Energy System Technology | ||||||||||||||||||||||||||||
Location: | Oldenburg | ||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Networked Energy Systems > Energy System Technology | ||||||||||||||||||||||||||||
Deposited By: | Behrends, Holger | ||||||||||||||||||||||||||||
Deposited On: | 18 Jan 2022 16:50 | ||||||||||||||||||||||||||||
Last Modified: | 18 Jan 2022 16:50 |
Repository Staff Only: item control page