Behrends, Holger und Millinger, Dietmar und Weihs-Sedivy, Werner und Javornik, Anze und Roolfs, Gerold und Geissendörfer, Stefan (2022) Analysis Of Residual Current Flows In Inverter Based Energy Systems Using Machine Learning Approaches. Energies, 15 (2). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en15020582. ISSN 1996-1073.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.mdpi.com/1996-1073/15/2/582
Kurzfassung
Faults and unintended conditions in grid-connected photovoltaic systems often cause a change of the residual current. This article describes a novel machine learning based approach to detecting anomalies in the residual current of a photovoltaic system. It can be used to detect faults or critical states at an early stage and extends conventional threshold-based detection methods. For this study, a power-hardware-in-the-loop approach was carried out, in which typical faults have been injected under ideal and realistic operating conditions. The investigation shows that faults in a photovoltaic converter system cause a unique behaviour of the residual current and fault patterns can be detected and identified by using pattern recognition and variational autoencoder machine learning algorithms. In this context, it was found that the residual current is not only affected by malfunctions of the system, but also by volatile external influences. One of the main challenges here is to separate the regular residual currents caused by the interferences from those caused by faults. Compared to conventional methods, which respond to absolute changes in residual current, the two machine learning models detect faults that do not affect the absolute value of the residual current.
elib-URL des Eintrags: | https://elib.dlr.de/148316/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Analysis Of Residual Current Flows In Inverter Based Energy Systems Using Machine Learning Approaches | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 14 Januar 2022 | ||||||||||||||||||||||||||||
Erschienen in: | Energies | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 15 | ||||||||||||||||||||||||||||
DOI: | 10.3390/en15020582 | ||||||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||||||
Name der Reihe: | Artificial Intelligence and Smart Energy | ||||||||||||||||||||||||||||
ISSN: | 1996-1073 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | renewable energies; photovoltaic; predictive maintenance; reliability; anomaly detection; residual current; machine learning; reconstruction error | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie | ||||||||||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Energiesystemtechnologie | ||||||||||||||||||||||||||||
Hinterlegt von: | Behrends, Holger | ||||||||||||||||||||||||||||
Hinterlegt am: | 18 Jan 2022 16:50 | ||||||||||||||||||||||||||||
Letzte Änderung: | 18 Jan 2022 16:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags