Hellekes, Jens und Merkle, Nina Marie und López Díaz, María und Henry, Corentin und Heinrichs, Matthias und Azimi, Seyedmajid und Kurz, Franz (2021) Assimilation of parking space information derived from remote sensing data into a transport demand model. In: ITS World Congress 2021: Book of Abstracts, Seiten 2579-2590. ITS World Congress 2021, 2021-10-11 - 2021-10-15, Hamburg, Deutschland.
PDF
1MB |
Kurzfassung
Accurate data on parking spaces and their utilization is important for optimizing traffic management today and will become even more essential in light of upcoming ITS technologies and autonomous driving. For many cities, however, no comprehensive, standardized and up-to-date database exists. In this paper, we present a novel processing chain combining state-of-the-art remote sensing methods with geospatial analysis. Deep neural networks are used for vehicle detection and traffic area segmentation to identify all types of parking areas and their occupancy on aerial image sequences of the city of Brunswick in Germany. A discretization method is formulated to estimate parking capacity and a regression analysis is performed to draw conclusion for areas not covered by aerial imagery. By comparing the number of stopped vehicles with simulation results from a transport demand model, light can be shed on parking related traffic.
elib-URL des Eintrags: | https://elib.dlr.de/147964/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
Titel: | Assimilation of parking space information derived from remote sensing data into a transport demand model | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | Oktober 2021 | ||||||||||||||||||||||||||||||||
Erschienen in: | ITS World Congress 2021: Book of Abstracts | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 2579-2590 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Deep Learning, Aerial Imagery, Image Segmentation, Vehicle Detection, Parking Space Management, OpenStreetMap, Geospatial Analysis, Travel Demand Model | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | ITS World Congress 2021 | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Hamburg, Deutschland | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 11 Oktober 2021 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 15 Oktober 2021 | ||||||||||||||||||||||||||||||||
Veranstalter : | ERTICO ITS Europe | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - UrMo Digital (alt) | ||||||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof , Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse Institut für Verkehrsforschung > Mobilität und urbane Entwicklung | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Hellekes, Jens | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 11 Jan 2022 09:52 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags