Ewert, Roland und Kreuzinger, Johannes (2021) Hydrodynamic/acoustic splitting approach with flow-acoustic feedback for universal subsonic noise computation. Journal of Computational Physics (444). Elsevier. doi: 10.1016/j.jcp.2021.110548. ISSN 0021-9991.
PDF
- Preprintversion (eingereichte Entwurfsversion)
4MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0021999121004435
Kurzfassung
A generalized approach to decompose the compressible Navier-Stokes equations into an equivalent set of coupled equations for flow and acoustics is introduced. As a significant extension to standard hydrodynamic/acoustic splitting methods, the approach provides the essential coupling terms, which account for the feedback from the acoustics to the flow. A unique simplified version of the split equation system with feedback is derived that conforms to the compressible Navier-Stokes equations in the subsonic flow regime, where the feedback reduces to one additional term in the flow momentum equation. Subsonic simulations are conducted for flow-acoustic feedback cases using a scale-resolving runtime coupled hierarchical Cartesian mesh solver, which operates with different explicit time step sizes for incompressible flow and acoustics. The first simulation case focuses on the tone of a generic flute. With the flow-acoustic feedback term included, the simulation produces the tone characteristics similar to those obtained by Kühnelt with a LatticeBoltzmann method. In a contrasting manner, the simulation lacks the proper tone without the feedback term included. As the second simulation case, a thick plate in a duct is studied at various low Mach numbers around the Parker-beta-mode resonance. The simulations reveal the flow-acoustic feedback characteristics in very good agreement with results from experiment of Welsh et al. Simulations and theoretical considerations reveal that the feedback term does not reduce the stable convective flow based time step size of the flow equations.
elib-URL des Eintrags: | https://elib.dlr.de/147924/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Hydrodynamic/acoustic splitting approach with flow-acoustic feedback for universal subsonic noise computation | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 15 Juli 2021 | ||||||||||||
Erschienen in: | Journal of Computational Physics | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1016/j.jcp.2021.110548 | ||||||||||||
Verlag: | Elsevier | ||||||||||||
ISSN: | 0021-9991 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Hydrodynamic-acoustic splitting approach, Acoustic perturbation equations, Computational aeroacoustics, Incompressible Navier-Stokes equations | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien, L - Klima, Wetter und Umwelt, E - Windenergie | ||||||||||||
Standort: | Braunschweig | ||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Technische Akustik | ||||||||||||
Hinterlegt von: | Ewert, Dr.-Ing. Roland | ||||||||||||
Hinterlegt am: | 04 Jan 2022 11:45 | ||||||||||||
Letzte Änderung: | 04 Jan 2022 11:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags