Neumann, Anton and Hamann, Tanner and Danner, Timo and Hein, Simon and Becker-Steinberger, Katharina and Wachsman, Eric and Latz, Arnulf (2021) Effect of the 3D Structure and Grain Boundaries on Lithium Transport in Garnet Solid Electrolytes. ACS Applied Energy Materials, 4 (5), pp. 4786-4804. American Chemical Society (ACS). doi: 10.1021/acsaem.1c00362. ISSN 2574-0962.
![]() |
PDF
- Only accessible within DLR bis 1 June 2022
- Preprint version (submitted draft)
11MB |
Official URL: https://pubs.acs.org/doi/10.1021/acsaem.1c00362
Abstract
Lithium metal anodes are vital enablers for high-energy all-solid-state batteries (ASSBs). To promote ASSBs in practical applications, performance limitations such as the high lithium interface resistance and the grain boundary resistance in the solid electrolyte (SE) need to be understood and reduced by optimization of the cell design. In this work, we use our 3D microstructure-resolved simulation approach combined with a modified grain boundary transport model for the SE to shed some light on the aforementioned limitations in garnet ASSBs. Using high-resolution volume images of the SE electrode sample, we are able to reconstruct the SE microstructure. Using a grain segmentation algorithm, we further distinguish individual grains and account for the influence of the SE grain size and grain boundaries. We focus our simulation work on the trilayer cell architecture, consisting of two porous SE electrodes separated by a dense layer. Even though the highly porous SE electrodes reduce the lithium interface resistance by providing a higher active surface area, the increased electrode tortuosity also reduces the effective ionic conductivity in the SE. We confirm via impedance simulation studies and validation against experimental results that with increasing SE electrode porosity, the lithium transport becomes limited by grain boundaries. We also correlate the area-specific resistance to different lithium infiltration stages in the trilayer cell by spatially resolving the current density distribution. This analysis allows us to suggest a plausible deposition mechanism, and moreover, we identify current density hot spots in the proximity of the dense layer. These hot spots might lead to dendrite formation and long-term cell failure. The joint theoretical and experimental study gives guidelines for cell design and optimization which allow further improvement of the trilayer architecture.
Item URL in elib: | https://elib.dlr.de/147561/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Effect of the 3D Structure and Grain Boundaries on Lithium Transport in Garnet Solid Electrolytes | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 4 May 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | ACS Applied Energy Materials | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 4 | ||||||||||||||||||||||||
DOI : | 10.1021/acsaem.1c00362 | ||||||||||||||||||||||||
Page Range: | pp. 4786-4804 | ||||||||||||||||||||||||
Publisher: | American Chemical Society (ACS) | ||||||||||||||||||||||||
ISSN: | 2574-0962 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | all-solid-state batteries garnet solid electrolyte 3D microstructure-resolved simulations interface resistance grain boundary lithium interface | ||||||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||||||
HGF - Program: | Materials and Technologies for the Energy Transition | ||||||||||||||||||||||||
HGF - Program Themes: | Electrochemical Energy Storage | ||||||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||||||
DLR - Program: | E SP - Energy Storage | ||||||||||||||||||||||||
DLR - Research theme (Project): | E - Electrochemical Storage | ||||||||||||||||||||||||
Location: | Ulm | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Engineering Thermodynamics > Computational Electrochemistry | ||||||||||||||||||||||||
Deposited By: | Danner, Timo | ||||||||||||||||||||||||
Deposited On: | 23 Dec 2021 21:12 | ||||||||||||||||||||||||
Last Modified: | 23 Dec 2021 21:12 |
Repository Staff Only: item control page