Doicu, A. und Doicu, Alexandru und Efremenko, Dmitry und Loyola, Diego und Trautmann, Thomas (2021) An Overview of Neural Network Methods for Predicting Uncertainty in Atmospheric Remote Sensing. Remote Sensing, 13 (24), Seite 5061. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs13245061. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
698kB |
Offizielle URL: http://dx.doi.org/10.3390/rs13245061
Kurzfassung
In this paper, we present neural network methods for predicting uncertainty in atmospheric remote sensing. These include methods for solving the direct and the inverse problem in a Bayesian framework. In the first case, a method based on a neural network for simulating the radiative transfer model and a Bayesian approach for solving the inverse problem is proposed. In the second case, (i) a neural network, in which the output is the convolution of the output for a noise-free input with the input noise distribution; and (ii) a Bayesian deep learning framework that predicts input aleatoric and model uncertainties, are designed. In addition, a neural network that uses assumed density filtering and interval arithmetic to compute uncertainty is employed for testing purposes. The accuracy and the precision of the methods are analyzed by considering the retrieval of cloud parameters from radiances measured by the Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR).
elib-URL des Eintrags: | https://elib.dlr.de/147553/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | An Overview of Neural Network Methods for Predicting Uncertainty in Atmospheric Remote Sensing | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 14 Dezember 2021 | ||||||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 13 | ||||||||||||||||||||||||
DOI: | 10.3390/rs13245061 | ||||||||||||||||||||||||
Seitenbereich: | Seite 5061 | ||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | neural networks; interval arithmetic; radiative transfer | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Spektroskopische Verfahren der Atmosphäre | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||||||
Hinterlegt von: | Efremenko, Dr Dmitry | ||||||||||||||||||||||||
Hinterlegt am: | 15 Dez 2021 12:34 | ||||||||||||||||||||||||
Letzte Änderung: | 05 Dez 2023 09:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags