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Abstract: In this paper, we present neural network methods for predicting uncertainty in atmospheric
remote sensing. These include methods for solving the direct and the inverse problem in a Bayesian
framework. In the first case, a method based on a neural network for simulating the radiative transfer
model and a Bayesian approach for solving the inverse problem is proposed. In the second case,
(i) a neural network, in which the output is the convolution of the output for a noise-free input
with the input noise distribution; and (ii) a Bayesian deep learning framework that predicts input
aleatoric and model uncertainties, are designed. In addition, a neural network that uses assumed
density filtering and interval arithmetic to compute uncertainty is employed for testing purposes.
The accuracy and the precision of the methods are analyzed by considering the retrieval of cloud
parameters from radiances measured by the Earth Polychromatic Imaging Camera (EPIC) onboard
the Deep Space Climate Observatory (DSCOVR).

Keywords: neural networks; interval arithmetic; radiative transfer

1. Introduction

In atmospheric remote sensing, the retrieval of atmospheric parameters is an inverse
problem that is usually ill posed. Due to its ill posedness, measurement errors can lead to
large errors in the retrieved quantities. It is therefore desirable to characterize the retrieved
value by an estimate of uncertainty describing a range of values that probably produce a
measurement [1].

The retrieval algorithms are mostly based on deterministic or stochastic optimization
methods. From the first category, the method of Tikhonov regularization and iterative
regularization methods deserve to be mentioned, while from the second category, the
Bayesian methods are the most representative. The Bayesian framework [2,3] provides an
efficient way to deal with the ill-posedness of the inverse problem and its uncertainties. In
this case, the solution of the inverse problem is given by the a posteriori distribution (the
conditional distribution of the retrieval quantity given the measurement) that accounts for
all assumed retrieval uncertainties. Under the assumptions that (i) the a priori knowledge
and the measurement uncertainty are both Gaussian distributions, and (ii) the forward
model is moderately nonlinear, the a posteriori distribution is approximately Gaussian
with a covariance matrix that can be analytically calculated. However, even neglecting the
validity of these assumptions, the method is not efficient for the operational processing
of large data volumes. The reason is that the computations of the forward model and its
Jacobian are expensive computational processes.

Compared to Bayesian methods, neural networks are powerful tools for the design
of efficient retrieval algorithms. Their capability to approximate any continuous function
on a compact set to an arbitrary accuracy makes them well suited to approximate the
input–output function represented by a radiative transfer model. An additional feature is
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that the derivatives of a neural network model with respect to its inputs can be analytically
computed. Thus, a neural network algorithm can produce, in addition to the approximation of
the radiative quantities of interest, also an estimation of their derivatives with respect to the
model inputs. While the training of a neural network may require a significant amount of
time, a trained neural network may deliver accurate predictions of the forward model and
its Jacobian, typically in a fraction of a millisecond.

Neural networks were initially developed for the emulation of radiative transfer
models [4–8] and subsequently for atmospheric remote sensing. The latter include:

1. Neural networks that are used to emulate the forward model and are applied in
conjunction with a Bayesian approach to solve the inverse problem [9–12];

2. Neural networks that are developed to directly learn the retrieval mappings from
data [13–20]; and

3. Neural networks that are designed to directly invert the atmospheric parameters of
interest which are then used as initial values in an optimization algorithm, e.g., the
method of Tikhonov regularization [21,22].

In the first case, the total uncertainty sums up the contributions of the uncertainties in the
data and in the neural network model, whereby the model uncertainty is computed from
the statistics of the errors over the data set. However, the retrieval algorithm is still based on
the assumption that the forward model is nearly linear, which is generally not true. In the
second case, the probabilistic character of the inverse problem is neglected and uncertainty
estimates are provided as mean errors computed over the data set; this is a disadvantage
compared to Bayesian methods. Remarkable exceptions to the approaches listed above are
the works of Aires [23,24], in which a Bayesian framework in conjunction with the Laplace
approximation was used to model the retrieval errors (estimated from the error covariance
matrix observed on the data set), and of Pfreundschuh et al. [25], in which a quantile
regression neural network was designed. Unfortunately, the Laplace approximation is only
suitable for small training sets and simple networks, while quantile regression is suitable
for the retrieval of scalar quantities (it is unclear whether a reasonable approximation of
the quantile contours of the joint a posteriori distribution can be obtained).

This paper is devoted to an overview of neural networks methods for predicting
uncertainty in atmospheric remote sensing. In addition to the method based on a neural
network for simulating the radiative transfer model and a Bayesian approach for solving
the inverse problem (Case 1 above), methods relying on Bayesian networks are described.
These methods, in which the network activations and weights can be modeled by paramet-
ric probability distributions, are standard tools for uncertainty predictions in deep neural
networks, and can be applied to nonlinear retrieval problems, and to the best knowledge
of the authors, have not yet been used in atmospheric remote sensing. The paper, which
is merely of pedagogical nature, is organized as follows. In Section 1, we present the
theoretical background of this study. This is then used in Section 2 to develop several
neural network methods and apply them to a specific cloud parameters retrieval problem.
Section 3 contains a few concluding remarks.

2. Theoretical Background

We consider a generic model y = F(x), where x ∈ RNx is the input vector, F is some
deterministic function and y ∈ RNy is the output vector. For an atmosphere characterized
by a set of state parameters, the signal measured by an instrument at different wavelengths
can be computed by a radiative transfer model R. Specifically, we will refer to the measure-
ment signals as data, and split the vector of state parameters in (i) the vector of atmospheric
parameters that are intended to be retrieved, and (ii) the vector of atmospheric parameters
that are known to have some accuracy, but are not included in the retrieval (forward model
parameters). In this study, we will use neural networks to model the radiative transfer
function R, as well as its inverse R−1. In this regard and in order to simplify the notation,
we will consider two cases. In the first case, referred to as the direct problem, the input x is
the set of atmospheric parameters, the output y is the set of data and the forward model F



Remote Sens. 2021, 13, 5061 3 of 34

coincides with the radiative transfer model R, while in the second case, referred to as the
inverse problem, the situation is reversed: the input x includes the sets of data and forward
model parameters, while the output y includes the set of atmospheric parameters to be
retrieved (in the absence of forward model parameters, the forward model F reproduces
the inverse of the radiative transfer model R−1).

In machine learning, the task is to approximate F(x) by a neural network model f(x, ω)
characterized by a set of parameters ω [26,27]. For doing this, we consider a set of inputs
X = {x(n)}N

n=1 and a corresponding set of outputs Y = {y(n)}N
n=1, given by y(n) = F(x(n)),

where N is the number of samples. In a regression problem, D = {(x(n), y(n))}N
n=1 forms a

data set—or more precisely, a training set—from which the neural network model f(x, ω)
can be inferred. Traditional neural networks are comprised of units or nodes arranged
in an input layer, an output layer, and a number of hidden layers situated between the
input and output layers. Let L + 1 be the number of layers, and Nl be the number of units
in layer l, where l = 0, . . . , L. The input layer corresponds to l = 0, the output layer to
l = L, so that Nx = N0 and Ny = NL. In feed-forward networks, the signals yi,l−1 from
units i = 1, . . . , Nl−1 in layer l − 1 are multiplied by a set of weights wji,l , j = 1, . . . , Nl ,
i = 1, . . . , Nl−1, and then summed and combined with a bias bj,l , j = 1, . . . , Nl . This

calculation forms the pre-activation signal uj,l = ∑
Nl−1
i=1 wji,lyi,l−1 + bj,l which is transformed

by the layer activation function gl to form the activation signal yj,l of unit j = 1, . . . , Nl in
layer l. Defining the matrix of weights Wl ∈ RNl×Nl−1 and the vector of biases bl ∈ RNl

by [Wl ]ji = wji,l and [bl ]j = bj,l , respectively, and letting ω = {Wl , bl}L
l=1 be the set of

network parameters, the feed-forward operations can be written in matrix form as

y0 = x, (1)

ul = Wlyl−1 + bl , (2)

yl = gl(ul), l = 1, . . . , L, (3)

f(x, ω) = yL, (4)

where [yl ]i = yi,l and [ul ]j = uj,l . Deep learning is the process of regressing the network
parameters ω on the data D. The standard procedure is to compute a point estimate ω̂
as the minimizer of some loss function by using the back-propagation algorithm [28]. In
a stochastic framework, the loss function is usually defined as the log likelihood of the
data set, with an eventual regularization term to penalize the network parameters. From
a statistical point of view, this procedure is equivalent to a maximum a posteriori (MAP)
estimation when regularization is used, and maximum likelihood estimation (MLE) when
this is not the case.

In this section, we review the basic theory which serves as a basis for the development
of different neural network architectures. In particular, we describe (i) the methodology
for computing point estimates; (ii) the different types of uncertainty; and (iii) Bayesian
networks.

2.1. Point Estimates

A data model with output noise is given by

y = f(x, ω) + δy, (5)

δy ∼ N (0,Cδ
y), (6)

where here and in the following, the notation N (x; x,Cx), or more simply and when
no confusion arises, N (x,Cx) stands for a Gaussian distribution with the mean x and
covariance matrix Cx. When the true input x is hidden (so that it cannot be observed) but
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samples from a random vector z = x + δx with δx ∼ N (0,Cδ
x), i.e., p(z|x) = N (z; x,Cδ

x)
are available, the pertinent model is the data model with input and output noise, that is:

y = f(z, ω) + ∆y, (7)

∆y ∼ N (0, C δ
y ). (8)

The error ∆y sums up the contributions of the output error and of the input error that
propagates through the network in the output space. Specifically, when the noise process
in the input space is small and the linearization:

f(x, ω) = f(z, ω) +Kx(z, ω)(x− z), (9)

Kx(z, ω) =
∂f
∂x

(z, ω), (10)

is assumed, we find (cf. Equations (5), (7), and (9)) ∆y = δy + Kx(z, ω)(x− z), and further:

C δ
y (z, ω) = Cδ

y +Kx(z, ω)Cδ
xK

T
x (z, ω). (11)

To design a neural network, we consider a data set D associated to each data model,
meaning that:

1. An exact data set D = {(x(n), y(n))}N
n=1, where y(n) = F(x(n));

2. A data set with output noise D = {(x(n), y(n))}N
n=1, where y(n) = F(x(n)) + δy; and

3. A data set with input and output noise D = {(z(n), y(n))}N
n=1, where z(n) = x(n) + δx

and y(n) = F(x(n)) + δy.

In a stochastic framework, a neural network can be regarded as a probabilistic model
p(y|z, ω); given an observable input z and a set of parameters ω, a neural network assigns
a probability to each possible output y. In view of Equations (7) and (8), the a priori
confidence in the predictive power of the model is given by

p(y|z, ω) = N (y; f(z, ω), C δ
y (z, ω)). (12)

The process of learning from the data D can be described by the posterior p(ω|D) =
p(ω|Z, Y), which represents the Bayes plausibility for the parameters ω given the data D.
This can be estimated by using the Bayesian rule:

p(ω|D) = p(D|ω)p(ω)

p(D) ∝ p(D|ω)p(ω) ∝ exp[−E(ω)], (13)

where p(D|ω) is the likelihood or the probability of the data, p(ω) is the prior over the
network parameters, p(D) =

∫
p(D|ω)p(ω)dω the evidence, and:

E(ω) = ED(ω) + ER(ω) (14)

is the loss function. The first term ED(ω) in the expression of the loss function E(ω) is the
contribution from the likelihood p(D|ω), written as the product (cf. Equation (12)):

p(D|ω) = p(Y|Z, ω) =
N

∏
n=1

p(y(n)|z(n), ω) ∝ exp[−ED(ω)], (15)

ED(ω) =
1
2

N

∑
n=1

[y(n) − f(z(n), ω)]T [C δ
y (z

(n), ω)]−1[y(n) − f(z(n), ω)], (16)
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while the second term ER(ω) is the contribution from the prior p(ω), chosen for example,
as the Gaussian distribution:

p(ω) = N (ω; 0,Cω) ∝ exp[−ER(ω)], (17)

ER(ω) =
1
2

ωTC−1
ω ω. (18)

In this regard, point estimates with regularization are computed by maximizing the
posterior p(ω|D):

ω̂ = ωMAP = arg max
ω

log p(ω|D) = arg min
ω

E(ω), (19)

while point estimates without regularization are computed by maximizing the likelihood
p(D|ω):

ω̂ = ωMLE = arg max
ω

log p(D|ω) = arg min
ω

ED(ω). (20)

Some comments are in order.

1. For a data model with output noise, we have z = x, C δ
y = Cδ

y, andD = {(x(n), y(n))}N
n=1

with y(n) = F(x(n)) + δy. Moreover, for the covariance matrix Cδ
y = σ2

yI, where I is the
identity matrix, we find:

ED(ω) =
N

∑
n=1

1
2σ2

y
||y(n) − f(z(n), ω)||2, (21)

or more precisely:

ED(ω) =
N

∑
n=1

[ 1
2σ2

y
||y(n) − f(z(n), ω)||2 +

Ny

2
log σ2

y

]
, (22)

Assuming Cω = σ2
ωI and using Equation (21), we infer that the point estimate

ω̂ = ωMAP is the minimizer of the Tikhonov function:

E(ω) =
1
2

N

∑
n=1
||y(n) − f(x(n), ω)||2 + α||ω||2, (23)

where α = σ2
y/(2σ2

ω) is the regularization parameter.
2. A model with exact data can be handled by considering the data model with output

noise and by making σ2
y ≈ 0 in the representation of the data error covariance matrix

Cδ
y = σ2

yI. For σ2
y ≈ 0, the relation y(n) = F(x(n)) + δy yields y(n) ≈ F(x(n)), while

Equation (23) and the relation α = σ2
y/(2σ2

ω) ≈ 0 gives:

ω̂ ≈ ωMLE = arg min
ω

E(ω),

E(ω) =
1
2

N

∑
n=1
||y(n) − f(x(n), ω)]||2.

Thus, when learning a neural network with the exact data, the maximum likelihood
estimate minimizes the sum of square errors. Note that in this case, regularization is
not absolutely required, because the output data are exact.

3. For a data model with input and output noise, the computation of the estimate ω̂ is not
a trivial task, because the covariance matrix C δ

y (z, ω), which enters in the expression
of ED(ω), depends on ω. Moreover, in Equation (11), C δ

y (z, ω) corresponds to a
linearization of the neural network function under the assumption that the noise
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process in the input space is small. This problem can be solved by implicitly learning
the covariance matrix C δ

y (z, ω) from the loss function [29]. Specifically, we assume
that C δ

y (z, ω) is a diagonal matrix with entries σ2
j (z, ω), that is:

C δ
y (z, ω) = diag[σ2

j (z, ω)]
Ny
j=1, (24)

implying:

log p(y|z, ω) ∝ −
Ny

∑
j=1

{ 1
2σ2

j (z, ω)
[yj − µj(z, ω)]2 +

1
2

log σ2
j (z, ω)

}
. (25)

Here, we identified µ ≡ f, and set µj = [µ]j and yj = [y]j. To learn the variances
σ2

j (z, ω) from the loss function, we use a single network with input z, and output

[µj(z, ω), σ2
j (z, ω)] ∈ R2Ny ; thus, in the output layer, Ny units are used to predict µj

and Ny units to predict σ2
j . In practice, to increase numerical stability, we train the

network to predict the log variance ρj = log σ2
j , in which case, the likelihood loss

function is:

ED(ω) =
N

∑
n=1

E(n)
D (ω), (26)

with:

E(n)
D (ω) =

1
2

Ny

∑
j=1
{exp[−ρj(z(n), ω)][y(n)j − µj(z(n), ω)]2 + ρj(z(n), ω)}. (27)

It should be pointed out that from Equation (25) that it is apparent that the model
is stopped from predicting high uncertainty through the log σ2

j term, but also low

uncertainty for points with high residual error, as low σ2
j will increase the contribution

of the residual. On the other hand, it should also be noted that a basic assumption of
the model is that the covariance matrix C δ

y (z, ω) is diagonal, which unfortunately, is
contradicted by Equation (11).

4. In order to generate a data set with input and output noise, that is,D = {(z(n), y(n))}N
n=1,

where z(n) = x(n) + δx, δx ∼ N (0,Cδ
x), and y(n) = F(x(n)) + δy, we used the jitter

approach. According to this approach, at each forward pass through the network, a
new random noise δx is added to the original input vector x(n). In other words, each
time a training sample is passed through the network, random noise is added to the
input variables, making them different every time it is passed through the network. By
this approach, which is a simple form of data augmentation, the dimension of the data
set is reduced (actually, the data set isD = {(x(n), y(n))}N

n=1 with y(n) = F(x(n)) + δy).

2.2. Uncertainties

In our analysis, we are interested in estimating the uncertainty associated with the
underlying processes. The quantity which exactly quantifies the model’s uncertainty is the
predictive distribution of an unknown output y given an observable input z, defined by

p(y|z,D) =
∫

p(y|z, ω)p(ω|D)dω. (28)

If p(y|z,D) is known, the first two moments of the output y can be computed as
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E(y) =
∫

yp(y|z,D)dy, (29)

E(yyT) =
∫

yyT p(y|z,D)dy, (30)

and the covariance matrix as

Cov(y) = E(yyT)−E(y)E(y)T . (31)

From Equation (28), we see that the predictive distribution p(y|z,D) can be computed
if the Bayesian posterior p(ω|D) is known. Unfortunately, computing the distribution
p(ω|D) by means of Equation (13) is usually an intractable problem, because computing
the evidence p(D) =

∫
p(D|ω)p(ω)dω is not a trivial task. To address this problem, either:

1. The Laplace approximation, which yields an approximate representation for the
posterior p(ω|D); or

2. A variational inference approach, which learns a variational distribution qθ(ω) to
approximate the posterior p(ω|D),

can be used. In the first case, we are dealing with deterministic (point estimate) neural
networks, in which a single realization of the network parameters ω is learned, while in
the second case, we are dealing with stochastic neural networks, in which a distribution
over the network parameters ω is learned.

The Laplace approximation is of theoretical interest because it provides explicit repre-
sentations for the different types of uncertainty. In Appendix A it is shown that under the
Laplace approximation, the predictive distribution is given by [23,24,30]

p(y|z,D) ∝ exp
{
−1

2
[y− f(z, ω̂)]TC−1

y (z, ω̂)[z− f(z, ω̂)]
}

, (32)

Cy(z, ω̂) = C δ
y (z, ω̂) + C e

y (z, ω̂), (33)

C e
y (z, ω̂) = Kω(z, ω̂)H−1(ω̂)KT

ω(z, ω̂), (34)

where:
Kω(z, ω) =

∂f
∂ω

(z, ω) (35)

is the Jacobian of f with respect to ω and:

[H(ω̂)]ij =
∂E

∂ωi∂ωj
(ω̂), (36)

is the Hessian matrix of the loss function. Equation (32) provides a Gaussian approximation
to the predictive distribution p(y|z,D) with mean f(z, ω̂) and covariance matrix Cy(z, ω̂).
From Equation (33), we see that the covariance matrix Cy(z, ω̂) has two components.

1. The first component C δ
y (z, ω̂) is the covariance matrix in the distribution over the

error in the output y. This term, which is input dependent, describes the so-called
aleatoric heteroscedastic uncertainty measured by p(y|z, ω). For a data model with
output noise, we have (cf. Equation (11)) C δ

y = Cδ
y, and this term, which is input

independent, describes the so-called aleatoric homoscedastic uncertainty measured
by p(y|x, ω).

2. The second component C e
y (z, ω̂) reflects the uncertainty induced in the weights ω,

also called epistemic uncertainty or model uncertainty. The sources of this uncertainty
measured by p(ω|D) are for example: (i) non-optimal hyperparameters (the number
of hidden layers, the number of units per layer, the type of activation function); (ii)
non-optimal training parameters (the minimum learning rate at which the training is
stopped, the learning rate decay factor, the batch size used for the mini-batch gradient
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descent); and (iii) a non-optimal optimization algorithm (ADAGRAD, ADADELTA,
ADAM, ADAMAX, NADAM).

or model uncertainty, which refers to the fact that we do not know the model that best
explains the given data. For NNs, this is uncertainty from not knowing the best values of
weights in all the trainable layers. This is often referred to as reducible uncertainty, because
we can theoretically reduce this type of uncertainty by acquiring more data.

Some comments can be made here.

1. The heteroscedastic covariance matrix C δ
y (z, ω) = diag[σ2

j (z, ω)]
Ny
j=1 can be learned

from the data by minimizing the loss functions (26) and (27).
2. The computation of the epistemic covariance matrix C e

y (z, ω̂) from Equation (34)
requires the knowledge of the Hessian matrix H(ω̂). In general, this problem is
practically insoluble because the matrix H is very huge, and so, is very difficult
to compute. However, the problem can be evaded by using the diagonal Hessian
approximation

[H(ω̂)]ij = δij
∂2E
∂ω2

i
(ω̂),

where δij is the Kronecker delta. The diagonal matrix elements can be very efficiently
computed by using a procedure which is similar to the back-propagation algorithm
used for computing the first derivatives [31].

3. The covariance matrix Cy(z, ω̂) can be approximated by the conditional average
covariance matrix E(Cy|D) of all network errors ε = y− f(z, ω̂) over the data set
D, meaning that:

E(Cy|D) =
1
N

N

∑
n=1

[ε(n) −E(ε)][ε(n) −E(ε)]T ,

where ε(n) = y(n) − f(z(n), ω̂) and E(ε) = (1/N)∑N
n=1 ε(n). Note that this is a very

rough approximation, because in contrast to Cy(z, ω̂), E(Cy|D) does not depend on z.
4. For exact data, we have Cy(x, ω̂) = BC e

y (x, ω̂). Thus, when learning a neural network
with exact data, the predictive distribution p(y|x,D) is Gaussian with mean f(x, ω̂)
and (epistemic) covariance matrix Ce

y(x, ω̂).

2.3. Bayesian Networks

Stochastic neural networks are a type of neural networks built by introducing stochas-
tic components into the network (activation or weights). A Bayesian neural network can be
regarded as a stochastic neural network trained by using Bayesian inference [32]. This type
of neural network provides a natural approach to quantify uncertainty in deep learning
and allows to distinguish between epistemic and aleatoric uncertainties.

Bayesian neural networks equipped with variational inference bypass the computation
of the evidence p(D) =

∫
p(D|ω)p(ω)dω, which determines the Bayesian posterior

p(ω|D) via Equation (13), by learning a variational distribution qθ(ω) to approximate
p(ω|D), that is:

qθ(ω) ≈ p(ω|D), (37)

where θ are some variational parameters. These parameters are computed by minimizing
the Kullback–Leibler (KL) divergence:

KL(qθ(ω)|p(ω|D)) =
∫

qθ(ω) log
[

qθ(ω)

p(ω|D)

]
dω, (38)

with respect to θ. In fact, the KL divergence is a measure of similarity between the
approximate distribution qθ(ω) and the posterior distribution obtained from the full
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Gaussian process p(ω|D), and minimizing the KL divergence to be the same as minimizing
the variational free energy defined by

F(θ,D) = −
∫

qθ(ω) log p(D|ω)dω + KL(qθ(ω)|p(ω))

=
∫

qθ(ω)
[
log qθ(ω)− log p(ω)− log p(D|ω)

]
dω. (39)

Considering the data model with output noise, assuming Cδ
y = σ2

yI, and replacing
p(ω|D) by qθ(ω) in Equation (28), which gives an approximate predictive distribution:

p(y|x,D) ≈ qθ(y|x) =
∫

p(y|x, ω)qθ(ω)dω (40)

which can be approximated at test time by

qθ(y|x) ≈
1
T

T

∑
t=1

p(y|x, ωt), (41)

where ωt is sampled from the distribution qθ(ω). As a result, for p(y|x, ω) = N (y, f(x, ω),
Cδ

y = σ2
yI), the predictive mean and the covariance matrix of the output y given the input x,

can be approximated, respectively, by (Appendix B):

E(y) ≈ 1
T

T

∑
t=1

f(x, ωt), (42)

Cov(y) ≈ σ2
yI+

1
T

T

∑
t=1

f(x, ωt)f(x, ωt)
T −E(y)E(y)T . (43)

The first term σ2
yI in Equation (43) corresponds to the homoscedastic uncertainty (the

amount of noise in the data), while the second part corresponds to the epistemic uncertainty
(how much the model is uncertain in its prediction). The predictive mean (42) is known as
model averaging, and is equivalent to performing T stochastic passes through the network
and averaging the results. Note that for exact data, i.e., σ2

y ≈ 0, the covariance matrix
simplifies to:

Cov(y) ≈ 1
T

T

∑
t=1

f(x, ωt)f(x, ωt)
T −E(y)E(y)T (44)

and describes the epistemic uncertainty.
In this section, we present the most relevant algorithm that is used for Bayesian

inference (Bayes-by-backprop), as well as two Bayesian approximate methods. For this
purpose, we consider a data model with output noise and assume Cδ

y = σ2
yI; in this case,

p(D|ω) is given by Equation (15) in conjunction with Equations (21) or (22).

2.3.1. Bayes by Backpropagation

Bayes-by-backprop is a practical implementation of variational inference combined
with a reparameterization trick [33]. The idea of the parameterization trick is to introduce a
random variable ε, and to determine ω by a deterministic transformation t(ε, θ), such that
ω = t(ε, θ) follows the distributions qθ(ω). If the variational posterior qθ(ω) is a Gaussian
distribution with a diagonal covariance matrix, i.e., qθ(ω) = N (ω; µω , diag[σ2

ωj]
W
j=1), where

σωj = [σω ]j and W = dim(ω) = dim(µω) = dim(σω), a sample of the weight ω can be
obtained by sampling a unit Gaussian ε ∼ N (0, I), scaling it by a standard deviation σω

and by shifting a mean µω. Actually, to guarantee that σω is always non-negative, the
standard deviation can be parametrized pointwise as σω = σω(ρω) = log(1 + exp(ρω))
or as σω = σω(ρω) = exp(ρω/2) (i.e., ρωj = log σ2

ωj). Thus, the variational posterior
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parameters are θ = (µω, ρω). By using a Monte Carlo sampling with one sample, we
compute the variational free energy (39) by using the relations:

ε ∼ N (0, I),

ω = µω + σω(ρω) ◦ ε,

F(θ,D) = log qθ(ω)− log p(ω)− log p(D|ω),

where ◦ denotes point-wise multiplication. In Ref. [33], the prior over the weights p(ω) is
chosen as a mixture of two Gaussian with zero mean but differing variances, meaning that:

p(ω) = βN (ω; 0, σ2
1 I) + (1− β)N (ω; 0, σ2

2 I), (45)

while in [34], it is shown that, for qθ(ω) = N (ω; µω , diag[σ2
ωj]) and p(ω) = N (ω; 0, I), the

KL divergence KL(qθ(ω)|p(ω)) can be analytically computed; the result is:

KL(qθ(ω)|p(ω)) =
∫

qθ(ω)
[
log qθ(ω)− log p(ω)

]
dω

=
1
2

W

∑
j=1

[µ2
ωj + σ2

ωj − log(σ2
ωj)− 1], (46)

where µωj = [µω ]j, σωj = [σω ]j. Thus:

F(θ,D) = − log p(D|ω) +
1
2

W

∑
j=1

[µ2
ωj + σ2

ωj − log(σ2
ωj)− 1]. (47)

After the training stage, i.e., after the variational posterior parameters θ = (µω, ρω)
have been learned, we consider the set of samples {ωt}T

t=1, where ωt = µω + σω(ρω) ◦ εt
and εt is sampled from the Gaussian distributionN (0, I), and compute the predictive mean
and covariance matrix according to Equations (42) and (43).

2.3.2. Dropout

Dropout, which was initially proposed as a regularization technique during the
training [35,36], is equivalent to a Bayesian approximation. This result was proved in [37]
by showing that the variational free energy F(θ,D) has the standard form representation
of the dropout loss function (as the sum of a square loss function and a L2 regularization
term). A simplified proof of this assertion is given in Appendix C. The term “dropout”
refers to removing a unit along with all its connections. The choice of a dropped unit is
random. In the case of dropout, the feed-forward operation of a standard neural network (
2) and (3) becomes:

ul = WlZl−1yl−1 + bl , (48)

yl = gl(ul), (49)

where:

Zl−1 = diag[zk,l−1]
Nl−1
k=1 , (50)

zk,l−1 ∼ Bernoulli(p). (51)

Essentially, the output of the unit k in layer l − 1, yk,l−1 is multiplied by the binary
variable zk,l−1 to create the new output zk,l−1yk,l−1. The binary variable zk,l−1 takes the
value 1 with probability p and the value 0 with probability 1− p; thus, if zk,l−1 = 0, the new
output is zero and the unit k is dropped out as an input to the next layer l. The same values
of the binary variable are used in the backward pass when propagating the derivatives of
the loss function. In the test time, the weights Wl are scaled as pWl . Thus, we retain units
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with probability p at training time, and multiply the weights by p at test time. Alternatively,
in order to maintain constant outputs at training time, we can scale the weights by 1/p,
and do not modify the weights at test time. The model parameters ω = {Wl , bl}L

l=1 are
obtained by minimizing the loss function (21) with possibly an L2 regularization term.

Uncertainty can be obtained from a dropout neural network [37]. For the set of
samples {ωt}T

t=1 , where ωt corresponds to a realization from the Bernoulli distribution

Z
(t)
l−1 and W

(t)
l = WlZ

(t)
l−1 for all l = 1, . . . , L, the predictive mean and covariance matrix are

computed by means of Equations (42) and (43).

2.3.3. Batch Normalization

Ioffe and Szegedy [38] introduced batch normalization as a technique for training deep
neural networks that normalizes (standardizes) the inputs to a layer for each mini-batch.
This allows for higher learning rates, regularizes the model, and reduces the number of
training epochs. Moreover, Teye et al. [39] showed that a batch normalized network can
be regarded as an approximate Bayesian model, and it can thus be used for modeling
uncertainty.

Let us split the data setD into Nb mini-batches, and let the nth mini-batch B(n) contain
M pair samples (x(n,m), y(n,m)), meaning that:

D = ∪Nb
n=1B

(n),

B(n) = {(x(n,m), y(n,m))}M
m=1.

In batch normalization, the input u(n,m)
j,l = ∑

Nl−1
i=1 wji,ly

(n,m)
i,l−1 of the activation function

gl corresponding to unit j, layer l, sample m, and mini-batch n, which is first normalized:

ũ(n,m)
j,l =

u(n,m)
j,l − µ

(n)
j,l√

v(n)j,l + ε

, (52)

and then scaled and shifted:

û(n,m)
j,l = αj,l ũ

(n,m)
j,l + β j,l , (53)

where:

µ
(n)
j,l =

1
M

M

∑
m=1

u(n,m)
j,l and v(n)j,l =

1
M

M

∑
m=1

(u(n,m)
j,l − µ

(n)
j,l )2 (54)

are the mean and variance of the activation inputs over the M samples (in unit j, layer l and
mini-batch n), respectively, αj,l and β j,l are learnable model parameters, and ε is a small
number added to the mini-batch variance to prevent division by zero. By normalization
(or whitening), ũ(n,m)

j,l becomes a random variable with zero mean and unit variance,
while by scaling and shifting, we guarantee that the transformation (53) can represent the
identity transform. In a stochastic framework, we interpret the mean µ

(n)
j,l and variance

v(n)j,l , corresponding to the nth mini-batch B(n), as realizations of the random variables µj,l

and vj,l , corresponding to the data set D. The model parameters include the learnable
parameters:

θ = {wji,l , αj,l , β j,l |j = 1, . . . , Nl , i = 1, . . . , Nl−1, l = 1, . . . , L},

and the stochastic parameters:

ω = (µ, v) = {(µj,l , vj,l)|j = 1, . . . , Nl l = 1, . . . , L},
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where for the mini-batch B(n):

ω(n) = (µ(n), v(n)) = {(µ(n)
j,l , v(n)j,l )|j = 1, . . . , Nl l = 1, . . . , L}

is a realization of ω = (µ, v). Optimizing over mini-batches of size M instead on the full
training set, the objective function for the mini-batch B(n) becomes [39]:

F(n)(θ) =
1

2M

M

∑
m=1
||y(n,m) − fω(n)(x(n,m), θ)||2 + Ω(θ), (55)

where Ω(θ) = α ∑L
l=1
∥∥Wl

∥∥2
2 with [Wl ]ji = wji,l is the regularization term and the nota-

tion fω(n)(x, θ) indicates that the mean and variance ω(n) = (µ(n), v(n)) are used in the
normalization step (52). At the end of the training stage, we obtain:

1. The maximum a posteriori parameters θ̂ = θMAP;

2. The mean and variance realizations {ω(n) = (µ(n), v(n))}Nb
n=1 of the stochastic param-

eters ω = (µ, v); and
3. The moving averages of the mean and variance over the training set ω = (µ =

E(µ), v = E(v)).
Some comments can be made here.

1. A batch-normalized network samples the stochastic parameters ω once per training
step (mini-batch). For a large number of epochs, the ω(n) become independent and
identical distributed random variables for each training example;

2. The variational distribution qθ(ω) corresponds to the joint distribution of the weights
induced by the stochastic parameters ω;

3. The equivalence between a batch-normalized network and a Bayesian approximation
was proven in [39] by showing that (cf. Equations (39) and (55)) ∂KL(qθ(ω)|p(ω))/
∂θ = (N/σ2

y) ∂Ω(θ)/∂θ. The proof relies on the following simplified assumptions: (i)
no scale and shift transformations; (ii) batch normalization applied to each layer; (iii)
independent input features in each layer; and (iv) large N and M.

In the inference, the output for a given input x is fω(x, θ̂). To estimate the predictive
mean and covariance matrix, we proceed as follows. For each t = 1 . . . , T, we sample a
mini-batch B(t) from the data set D = ∪Nb

n=1B(n), and for the corresponding mean and
variance realization ω(t) ∈ {ω(n)}Nb

n=1, compute fω(t)(x, θ̂) and then the predictive mean
and covariance matrix from Equations (42) and (43) with fω(t)(x, θ̂) in place of f(x, ωt).

3. Neural Networks for Atmospheric Remote Sensing

In this section, we design several neural networks for atmospheric remote sensing. To
test the neural networks, we considered a specific problem, namely the retrieval of cloud
optical thickness and cloud top height from radiances measured by the Earth Polychro-
matic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR).
DSCOVR is placed in a Lissajous orbit about the Lagrange-1 point, and provides a unique
angular perspective in an almost backward direction with scattering angles between 168◦

and 176◦. The EPIC instrument has 10 spectral channels ranging from the UV to the near-IR,
which include four channels around the oxygen A- and B-bands; two absorption channels
are centered at 688 nm and 764 nm with bandwiths of 0.8 nm and 1.0 nm, respectively, while
two continuum bands are centered at 680 nm and 780 nm with bandwiths of 2.0 nm. These
four channels are used for inferring the cloud parameters. To generate the database, we use
a radiative transfer model based on the discrete ordinate method with matrix exponential
[40,41] that uses several acceleration techniques, as for example, the telescoping technique,
the method of false discrete ordinate [42], the correlated k-distribution method [43], and
the principal component analysis [44–46]. The atmospheric parameters to be retrieved
are the cloud optical thickness τ and the cloud top height H, while the forward model
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parameters are the solar and viewing zenith angles and the surface albedo. Specifically,
we consider the fact that the cloud optical thickness varies in the range 4.0, . . . , 16.0, the
cloud top height in the range 2.0, . . . 10.0 km, the solar and viewing zenith angles in the
range 0

◦
, . . . , 60◦, and the surface albedo in the range 0.02, . . . , 0.2 (only snow/ice free

scenes are considered). The simulations are performed for a water-cloud model with a
Gamma size distribution p(a) ∝ aα exp(−αa/amod) with parameters amod = 8 µm and
α = 6. The droplet size ranges between 0.02 and 50.0 µm, the cloud geometrical thickness
is 1 km and the relative azimuth angle between the solar and viewing directions is 176◦.
The O2 absorption cross-sections are computed using LBL calculations [47] with optimized
rational approximations for the Voigt line profile [48]. The wavenumber grid point spacing
is chosen as a fraction (e.g., 1/4) of the minimum half-width of the Voigt lines taken from
HITRAN database [49]. The Rayleigh cross-section and depolarization ratios are computed
as in [50], while the pressure and temperature profiles correspond to the US standard
model atmosphere [51]. The radiances are solar-flux normalized and are computed by
means of the delta-M approximation in conjunction with the TMS correction. We generate
N = 20,000 samples by employing the smart sampling technique [52]. Among this data set,
18,000 samples were used for training and the other 2000 for prediction. The noisy spectra
are generated by using the measurement noise δmes ∼ N (0, diag[σ2

mesj]
4
j=1), where for the

jth channel, we use σmesj = 0.1I j with I j being the average of the simulated radiance over
the N samples.

The neural network algorithms are implemented in FORTRAN by using a feed-
forward multilayer perceptron architecture. The tool contains a variety of optimization
algorithms, activation functions, regularization terms, dynamic learning rates, and stopping
rules. For the present application, the number of hidden layers and the number of units
in each layer are optimized by using 2000 samples from the training set for validation. To
estimate the performances of different hyperparameter configurations, we used the holdout
cross-validation together with a grid search over a set of three values for the number of
hidden layers, i.e., {1, 2, 3}, and a set of eight values for the number of units, i.e., {25, 50,
75, 100, 125, 150, 175, 200}. The mini-batch gradient descent in conjunction with Adaptive
Moment Estimation (ADAM) [53] is used as optimization tool, a mini batch of 100 samples
is chosen, and a ReLU activation function is considered.

3.1. Neural Networks for Solving the Direct Problem

For a direct problem, the input x is the set of atmospheric parameters, the output y is
the set of data, and the forward model F reproduces the radiative transfer model R.

We consider a neural network trained with exact data. For the predictive distribution
p(y|x,D) given by Equation (32), we assume that the epistemic covariance matrix C e

y (x, ω̂)
(= Cy(x, ω̂)) is computed from the statistics of ε = y− f(x, ω̂), that is, C e

y ≈ E(Cy|D),
where f(x, ω̂) is the network output. Furthermore, let yδ = y + δy with δy ∼ N (0,Cδ

y), be
the noisy data vector. Using the result:

p(yδ|y) ∝ exp
[
−1

2
(yδ − y)T(Cδ

y)
−1(yδ − y)

]
, (56)

we compute the predictive distribution for the noisy data p(yδ|x,D) by marginalization,
that is:

p(yδ|x,D) =
∫

p(yδ|y)p(y|x,D)dy

=
∫

exp
{
−1

2
[yδ − f(x, ω̂) + ∆y]T [C e

y (ω̂)]−1[yδ − f(x, ω̂) + ∆y]
}

× exp
[
−1

2
∆yT(Cδ

y)
−1∆y

]
d∆y

∝ exp
{
−1

2
[yδ − f(x, ω̂)]TC−1

y (ω̂)[yδ − f(x, ω̂)]
}

, (57)
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where (cf. Equation (33)) Cy(ω̂) = C e
y (ω̂) + Cδ

y and ∆y = y− yδ.
In the next step, we solve the inverse problem yδ = f(x, ω̂) by means of a Bayesian

approach [54,55]. In this case, the posteriori density p(x|yδ,D) is given by

p(x|yδ,D) = p(yδ|x,D)p(x)
p(y)

; (58)

whence, by assuming that the state vector x is a Gaussian random vector with mean xa and
the covariance matrix Cx, meaning that:

p(x) = N (x; xa,Cx) ∝ exp
[
−1

2
(x− xa)C

−1
x (x− xa)

T
]
, (59)

we obtain:
log p(x|yδ,D) = −1

2
V(x|yδ) + C, (60)

where:

V(x|yδ) = [yδ − f(x, ω̂)]C−1
y (ω̂)[yδ − f(x, ω̂)]T + (x− xa)C

−1
x (x− xa)

T (61)

is the a posteriori potential and C is constant. The maximum a posteriori estimator,
defined by

x̂ = xMAP = arg max
x

log p(x|yδ,D) = arg min
x

V(x|yδ), (62)

can be computed by any optimization method, as for example, the Gauss–Newton method.
If the problem is almost linear, the a posteriori density p(x|yδ,D) is Gaussian with the
mean x̂ and covariance matrix [54]:

Cx(x̂, ω̂) = [KT
x (x̂)C

−1
y (ω̂)Kx(x̂) + C−1

x ]−1. (63)

It should be pointed out that we can train the neural network for a data set with
output noise D = {(x(n), yδ(n))}N

n=1, in which case, the covariance matrix Cy(ω̂) can be
directly computed from the statistics of ε = yδ − f(x, ω̂).

Essentially, the method involves the following steps:

1. Train a neural network with exact data for simulating the radiative transfer model;
2. Compute the epistemic covariance matrix from the statistics of all network errors over

the data set;
3. Solve the inverse problem by a Bayesian approach under the assumption that the a

priori knowledge and the measurement uncertainty are both Gaussian;
4. Determine the uncertainty in the retrieval by assuming that the forward model is

nearly linear.

In Figure 1, we plot the histograms of the relative error over the prediction set:

εx =
xpred − x

x
,

where x stands for τ and H, and xpred and x are the predicted and true values, respectively.
Also shown here are the plots of xpred and xpred ± 3σx versus x. The results demonstrate
that the cloud optical thickness is retrieved with better accuracy than the cloud top height,
and that for the cloud top height, the predicted uncertainty are especially unrealistic,
because the condition:

xpred − 3σx ≤ x ≤ xpred + 3σx

is not satisfied. The reason for this failure might be that the forward model is not nearly
linear.
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Figure 1. Retrieval results for the direct problem. The plots in the upper panels show the histograms
of the relative error over the prediction set, while the lower plots show the predicted values (red) and
the uncertainty intervals (gray) versus the true values.

3.2. Neural Networks for Solving the Inverse Problem

For an inverse problem, the input x includes the sets of data and forward model
parameters (solar and viewing zenith angles, and surface albedo), while the output y
includes the set of atmospheric parameters to be retrieved (cloud optical thickness and
cloud top height).

3.2.1. Method 1

Let f(x, ω̂) be the output of a neural network trained with exact data, and assume that
the predictive distribution p(y|x,D) given by Equation (32), and in particular, the epistemic
covariance matrix C e

y (x, ω̂)(= Cy(x, ω̂)) are available. For the noisy input z = x + δx with
p(z|x) = N (z; x,Cδ

x = σ2
x I) and under the assumption that the prior p(x) is a slowly

varying function as compared to p(z|x), the predictive distribution of the network output
can be approximated by [56]

p(y|z,D) =
∫

p(y|x,D)p(x|z)dx

=
1

p(z)

∫
p(y|x,D)p(z|x)p(x)dx

≈
∫

p(y|x,D)p(z|x)dx. (64)

Thus, if p(x) varies much more slowly than p(z|x) = p(z − x), we assume that
p(y|z,D) is the convolution of the predictive distribution for an uncorrupted input p(y|x,D)
with the input noise distribution p(z− x). In the noise-free case, that is, if σx → 0, we
have limσx→0 p(z|x) = δ(z− x), yielding p(y|z,D) = p(y|x,D). Using Equation (64), we
obtain:
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E(y|z) =
∫

yp(y|z,D)dy

=
∫ (∫

yp(y|x,D)dy
)

p(z|x)dx

=
∫

f(x, ω̂)p(z|x)dx (65)

and:

E(yyT |z) =
∫

yyT p(y|z,D)dy

=
∫ (∫

yyT p(y|x,D)dy
)

p(z|x)dx

=
∫
[C e

y (x, ω̂) + f(x, ω̂)f(x, ω̂)T ]p(z|x)dx. (66)

Equations (65) and (66) show that in general E(y|z) 6= f(x, ω̂), and a noise process blurs or
smooths the original mappings.

To compute the predictive mean E(y|z) and the covariance matrix Cov(y|z), the
integrals in Equations (65) and (66) must be calculated. This can be done by Monte Carlo
integration (by sampling the Gaussian distribution p(z|x)) or by a quadrature method. In
the latter case, we consider a uniform grid {xi}Nint

i=1 in the interval, say [z− 2σx, z + 2σx],
define the weights:

vi =

exp
(
− 1

2σ2
x
||z− xi||2

)
∑Nint

i=1 exp
(
− 1

2σ2
x
||z− xi||2

) , (67)

and use the computational formulas:

E(y|z) =
Nint

∑
i=1

vif(xi, ω̂), (68)

and:

Cov(y|z) =
Nint

∑
i=1

viC
e
y (xi, ω̂) +

Nint

∑
i=1

vif(xi, ω̂)f(xi, ω̂)T −E(y|z)E(y|z)T . (69)

The neural network trained with exact data can be deterministic or stochastic, as for
example, Bayes-by-backprop, dropout, and batch normalization. In this regard, for each
noisy input z, we consider a uniform grid {xi}Nint

i=1 around z, calculate the weights vi by
means of Equation (67), and for each xi, compute C e

y (xi, ω̂) as follows:

1. For a deterministic network, we approximate C e
y (xi, ω̂) by the conditional average

covariance matrix E(C e
y |D) of all network errors over, that is, C e

y ≈ E(C e
y |D), yielding

∑Nint
i=1 viC

e
y (xi, ω̂) = E(C e

y |D);
2. For a Bayes-by-backprop and dropout networks, we compute C e

y (xi, ω̂) by means of
Equation (44) with E(y) as in Equation (42);

3. For a batch normalized network, we compute C e
y (xi, ω̂) as

Cov(y) =
1
T

T

∑
t=1

fω(t)(xi, θ̂)fω(t)(xi, θ̂)T −E(y)E(y)T

with E(y) = (1/T)∑T
t=1 fω(t)(xi, θ̂).
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Note that for a Bayes-by-backprop network, the output is f(xi, ω̂ = µ̂ω), for a dropout
network, the output f(xi, ω̂) is computed without dropout, and for a batch normalized
network, the output is fω(xi, θ̂).

In summary, the method uses:

1. Deterministic and stochastic networks trained with exact data to compute the epis-
temic covariance matrix; and

2. The assumption that the predictive distribution of the network output is the convo-
lution of the predictive distribution for an uncorrupted input with the input noise
distribution to estimate the covariance matrix.

Under the assumption that the noise process is Gaussian, the convolution integrals
are computed by a quadrature method with a uniform grid around the noisy input.

The results for Method 1 with deterministic and stochastic networks are illustrated in
Figures 2–5.
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Figure 2. Retrieval results obtained with Method 1 using a deterministic network.
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Figure 3. Retrieval results obtained with Method 1 using a Bayes-by-backprop network.
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Figure 4. Retrieval results obtained with Method 1 using a dropout network.
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Figure 5. Retrieval results obtained with Method 1 using a batch normalized network.

3.2.2. Method 2

In order to model both heteroscedastic and epistemic uncertainties, we used the
approach described in Ref. [57]. More precisely, we considered the data model with
input and output noise, and used dropout to learn the heteroscedastic covariance matrix

C δ
y (z, ω) = diag[σ2

j (z, ω)]
Ny
j=1 from the data (see Section 2.1). The network has the output

[µj(z, ω), σ2
j (z, ω)] ∈ R2Ny and is trained to predict the log variance ρj = log σ2

j , in which
case, the likelihood loss function is given by Equations (26) and (27). Considering the set of
samples {ωt}T

t=1 , where ωt corresponds to a realization of the Bernoulli distribution Z
(t)
l−1

and W
(t)
l = WlZ

(t)
l−1 for all l = 1, . . . , L, we compute the predictive mean and covariance

matrix as [57]

E(y) ≈ 1
T

T

∑
t=1

µ(z, ωt), (70)

Cov(y) ≈ 1
T

T

∑
t=1

diag[σ2
j (z, ωt)]

Ny
j=1 +

1
T

T

∑
t=1

µ(z, ωt)µ(z, ωt)
T −E(y)E(y)T , (71)

for each noisy input z. The first term in Equation (71) reproduces the heteroscedastic
uncertainty, while the second and third terms reproduce the epistemic uncertainty.

Instead of a dropout network, a Bayes-by-backprop network can also be used to learn
the heteroscedastic covariance matrix from the data. In this case, F(θ,D) is given by Equa-
tion (47) with log p(D|ω) = −ED(ω) = −∑N

n=1 E(n)
D (ω) and E(n)

D (ω) as in Equation (27).
The results for Method 2 with a dropout and a Bayes-by-backprop network are

illustrated in Figures 6 and 7.
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Figure 6. Retrieval results obtained with Method 2 using a dropout network.
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Figure 7. Retrieval results obtained with Method 2 using a Bayes-by-backprop network.

3.2.3. Method 3

Let ω̂ = {Wl , bl}L
l=1 be the parameters of a dropout network trained with exact data.

Further, assume that the input data are noisy, i.e., z = x + δx with p(z|x) = N (z; x,Cδ
x =

diag[σ2
xk]

Nx
k=1). In order to compute the heteroscedastic uncertainty, we forward propagate

the input noise through the network. This is done by using assumed density filtering and
interval arithmetic.

1. Assumed density filtering (ADF). This approach was applied to neural networks by
Gast and Roth [58] to replace each network activation by probability distributions.
In the following, we provide a simplified justification of this approach, while for a
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more pertinent analysis, we refer to Appendix D. For a linear layer (gl(x) = x), the
feed-forward operation (without dropout) is:

yk,l =
Nl−1

∑
j=1

wkj,lyj,l−1 + bk,l , k = 1, . . . , Nl , (72)

By straightforward calculation, we find:

µk,l = E(yk,l) =
Nl−1

∑
j=1

wkj,lE(yj,l−1) + bk,l =
Nl−1

∑
j=1

wkj,lµj,l−1 + bk,l , (73)

and:

E(yk,l)E(yk1,l) =
Nl−1

∑
j=1

Nl−1

∑
j1=1

wkj,lwk1 j1,lµj,l−1µj1,l−1

+ bk,lµk1,l + bk1,lµk,l − bk,lbk1,l , (74)

yielding:

E(yk,lyk1,l)−E(yk,l)E(yk1,l)

=
Nl−1

∑
j=1

Nl−1

∑
j1=1

wkj,lwk1 j1,l [E(yj,l−1yj1,l−1)−E(yj,l−1)E(yj1,l−1)]. (75)

Assuming that the yk,l are independent random variables, in which case, the covari-
ance matrix corresponding to the column vector [y1.l , . . . , yNl l ]

T is diagonal, meaning
that:

E(yk,lyk1,l)−E(yk,l)E(yk1,l) = δkk1

[
E(y2

k,l)−E2(yk,l)
]
= δkk1 vk,l , (76)

we obtain vk,l = ∑
Nl−1
j=1 w2

kj,lvj,l−1. In summary, the iterative process for a linear layer is:

µk,0 = xk, vk,0 = σ2
xk. (77)

µk,l =
Nl−1

∑
j=1

wkj,lµj,l−1 + bk,l , (78)

vk,l =
Nl−1

∑
j=1

w2
kj,lvj,l−1, l = 1, . . . , L. (79)

For a ReLU activation function ReLU(x) = max(0, x), it was shown that:

µReLUk,l =
√

vk,lφ(α) + µk,lΦ(α), (80)

vReLUk,l = µk,l
√

vk,lφ(α) + (µ2
k,l + vk,l)Φ(α)− µ2

ReLUk,l , (81)

where µk,l and vk,l are given by Equations (78) and (79), respectively, and:

α =
µk,l√vk,l

,

φ(x) =
1√
2π

exp
(
−1

2
x2
)

,

Φ(x) =
∫ x

−∞
φ(y)dy.

2. Interval Arithmetic (IA). Interval arithmetic is based on an extension of the real
number system to a system of closed intervals on the real axis [59]. For the intervals
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X and Y, the elementary arithmetic operations are defined by the rule X⊕Y = {x⊕
y|x ∈ X, y ∈ Y}, where the binary operation ⊕ can stand for addition, subtraction,
multiplication, or division. This definition guarantees that x⊕ y ∈ X⊕Y. Functions
of interval arguments are defined in terms of standard set mapping, that is, the image
of an interval X under a function f is the set f (X) = { f (x)|x ∈ X}. This is not
the same as an interval function obtained from a real function f by replacing the
real argument by an interval argument and the real arithmetic operations by the
corresponding interval operations. The latter is called an interval extension of the
real function f and is denoted by F(X). As a corollary of the fundamental theorem
of interval analysis, it can be shown that f (X) ⊆ F(X). Interval analysis provides a
simple and accessible way to assess error propagation. The iterative process for error
propagation is (compared with Equations (77)–(79)):

Yk,0 = [xk − σxk, xk + σxk], (82)

Uk,l =
Nl−1

∑
i=1

wkj,lYj,l−1 + bk,l , (83)

Yk,l = Gl(Uk,l), l = 1, . . . , L, (84)

while the output predictions µk,L and their standard deviations σk,L =
√vk,L are

computed as

µk,L =
1
2
[Yk,L + Yk,L], (85)

σk,L =
1
2
[Yk,L −Yk,L], k = 1, . . . , NL, (86)

where Gl(U) is the interval extension of the activation function gl , and X and X are
the left and right endpoints of the interval X, respectively, that is, X = [X, X].

By assumed density filtering and interval arithmetic, the forward pass of a neural
network generates not only the output predictions µL = [µ1,L, . . . , µNL ,L]

T but also their
variances vL = [v1,L, . . . , vNL ,L]

T . Following Ref. [2], we consider now a network with
dropout, that is, in Equations (78), (79) and (83), we replace wkj,l by wkj,lzj,l−1, where
zj,l−1 ∼ Bernoulli(p) and the dropout probability p is the same as that used for training.
For the set of samples {ωt}T

t=1, where ωt corresponds to a realization from the Bernoulli

distribution Z
(t)
l−1 and W

(t)
l = WlZ

(t)
l−1 for all l = 1, . . . , L, we denote by µL(x, ωt) and

vL(x, ωt) the outputs of the network for an input x corrupted by the noise δx ∼ N (0,Cδ
x =

diag[σ2
xk]

Nx
k=1), and compute the predictive mean and covariance matrix as (Appendix B)

E(y|x) ≈ 1
T

T

∑
t=1

µL(x, ωt), (87)

Cov(y|x) ≈ 1
T

T

∑
t=1

diag[vk,L(x, ωt)]
Ny
k=1 +

1
T

T

∑
t=1

µL(x, ωt)µL(x, ωt)
T

−E(y|x)E(y|x)T . (88)

From Equations (87) and (88), it is obvious that the prediction ensemble is not gener-
ated by the output of the network f(x, ωt), but by the prediction µL(x, ωt). In summary,
the algorithm involves the following steps:

1. Transform a dropout network into its assumed density filtering or interval arithmetic
versions (which does not require retraining);

2. Propagate (x, v0) through the dropout network and collect T output predictions and
variances;

3. Compute the predictive mean and covariance matrix by means of Equations (87) and (88).
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The results for Method 3 using assumed density filtering and interval arithmetic are
illustrated in Figures 8 and 9, respectively. The main drawback of this method is that it
requires the knowledge of the exact input data x. Because in atmospheric remote sensing
that is not the case, Method 3 will be used for a comparison with the other two methods.
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Figure 8. Retrieval results obtained with Method 3 using assumed density filtering.
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Figure 9. Retrieval results obtained with Method 3 using interval arithmetic. For a practical imple-
mentation of the algorithm, we use the interval arithmetic library INTLIB [60].

3.3. Summary of Numerical Analysis

In Table 1, we summarize the results of our numerical simulations by illustrating
the average relative error and the standard deviation over the prediction set, E(εx) ±√
E([εx −E(εx)]2) and E(σx), respectively, where x stands for the cloud optical thickness

τ and the cloud top height H. The accuracy of a method is reflected by the bias of the
error E(εx) and the interval about the mean with length

√
E([εx −E(εx)]2), while the

precision is reflected by the standard deviation E(σx) (which determines the length of the
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uncertainty interval). Note that (i)
√
E([εx −E(εx)]2) reproduces the square root of the

diagonal elements of the conditional average covariance matrix E(Cy|Dtest) of all network
errors over the test set Dtest; and (ii) roughly speaking, the epistemic (model) uncertainties
are large if there are large variations around the mean.

Table 1. Average relative error E(εx)±
√
E([εx −E(εx)]2) and standard deviation E(σx) over the

prediction set for the methods used to solve direct and inverse problems. The parameter x stands for
the cloud optical thickness τ and cloud top height H. In the case of the inverse problem, the results
correspond to Method 1 with a deterministic network (1a), Bayes-by-backprop (1b), dropout (1c),
and batch normalization (1d); Method 2 with dropout (2a) and Bayes-by-backprop (2b); and Method
3 with assumed density filtering (3a) and interval arithmetic (3b).

Method x Error Std. Deviation

Direct
Problem

τ −2.94× 10−2 ± 6.67× 10−2 2.04× 10−1

H −5.87× 10−2 ± 1.72× 10−1 3.66× 10−1

1a τ −2.78× 10−2 ± 1.30× 10−1 8.92× 10−1

H −1.96× 10−2 ± 1.29× 10−1 4.36× 10−1

1b τ 3.39× 10−2 ± 1.66× 10−1 9.23× 10−1

H 1.83× 10−2 ± 1.33× 10−1 8.11× 10−1

1c τ −8.75× 10−3 ± 2.25× 10−2 3.23× 10−1

H 3.45× 10−3 ± 4.11× 10−2 2.31× 10−1

1d τ 1.01× 10−2 ± 2.41× 10−2 3.54× 10−1

H 4.37× 10−3 ± 2.73× 10−2 2.29× 10−1

2a τ 1.16× 10−2 ± 4.05× 10−2 8.24× 10−1

H 1.63× 10−2 ± 4.21× 10−2 6.72× 10−1

2b τ 3.10× 10−2 ± 1.38× 10−1 9.63× 10−1

H 3.31× 10−2 ± 4.57× 10−2 4.88× 10−1

3a τ −6.67× 10−3 ± 2.48× 10−2 6.55× 10−1

H 8.18× 10−4 ± 3.18× 10−2 4.76× 10−1

3b τ −7.08× 10−3 ± 2.53× 10−2 7.82× 10−1

H 1.56× 10−3 ± 3.33× 10−2 6.53× 10−1

The results in Figures 1–9 and Table 1 can be summarized as follows:

1. For the direct problem, the neural network method used in conjunction with a
Bayesian inversion method provides satisfactory accuracy, but does not correctly
predict the uncertainty. The reason for this is that the forward model is not nearly
linear, which is the main assumption for computing the uncertainty in the retrieval.

2. For the inverse problem, the following features are apparent.

(a) Method 1 using a deterministic and Bayes-by-backprop network yields a low
accuracy, while the method using dropout and batch-normalized networks
provides high accuracy;

(b) Method 2 using a dropout network has an acceptable accuracy. For cloud
top height retrieval, the method using a Bayes-by-backprop network has a
similar accuracy, but for cloud optical thickness retrieval, the accuracy is low.
Possible reasons for the loss of accuracy of a Bayes-by-backprop network can
be (i) a non-optimal training and/or the use of the prior p(ω) = N (ω; 0, I)
instead of that given by Equation (45) (recall that for p(ω) = N (ω; 0, I), the
KL divergence KL(qθ(ω)|p(ω)) can be computed analytically).

(c) Method 3 with assumed density filtering and interval arithmetic is compara-
ble with Method 2 using a dropout network, that is, the method has a high
accuracy.
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(d) From the methods with reasonable accuracy, by using a dropout network, Method
2 predicts similar uncertainties to Method 3 with assumed density filtering and
interval arithmetic. In contrast, using dropout and batch normalized networks,
Method 1 provides lower uncertainties, dominated by epistemic uncertainties. In
general, it seems that Method 1 predicts a too small heteroscedastic uncertainty.
Possibly, this is due to the fact that we trained a neural network with exact
data, and for this retrieval example, the predictive distribution, represented
as a convolution integral over the input noise distribution, does not correctly
reproduce the aleatoric uncertainty.

(e) Because
√
E([εx −E(εx)]2) < E(σx), we deduce that the conditional average

covariance matrix E(Cy|Dtest) does not coincide with the predictive covariance
matrix Cov(y), which reflects the uncertainty.

4. Conclusions

We presented several neural networks for predicting uncertainty in an atmospheric
remote sensing. The neural networks are designed in a Bayesian framework and are
devoted to the solution of direct and inverse problems.

1. For solving the direct problem, we considered a neural network for simulating the
radiative transfer model, computed of the epistemic covariance matrix from the
statistics of all network errors over the data set, solving the inverse problem by a
Bayesian approach, and determined the uncertainty in the retrieval by assuming that
the forward model is nearly linear.

2. For solving the inverse problem, two neural network methods, relying on different
assumptions, were implemented:

(a) The first method uses deterministic and stochastic (Bayes-by-backprop, dropout,
and batch normalization) networks to compute the epistemic covariance ma-
trix and under the assumption that the predictive distribution of the network
output is the convolution of the predictive distribution for a noise-free input
with the input noise distribution, estimates the covariance matrix;

(b) the second method uses dropout and Bayes-by-backprop to learn the heteroscedas-
tic covariance matrix from the data.

In addition, for solving the inverse problem, a third method that uses a dropout
network and forward propagates the input noise through the network by using assumed
density filtering and interval arithmetic was designed. Because this method requires the
knowledge of the exact input data, it was used only for testing purposes.

Our numerical analysis has shown that a dropout network that is used to learn
the heteroscedastic covariance matrix from the data is appropriate for predicting the
uncertainty associated with the retrieval of cloud parameters from EPIC measurements. In
fact, the strengths of a dropout network are (i) its capability to avoid overfitting and (ii) its
stochastic character (the method is equivalent to a Bayesian approximation).

All neural network algorithms are implemented in FORTRAN and incorporated in
a common tool. In the future, we intend to implement the algorithms in the high-level
programming language Python and use the deep learning library PyTorch. This software
library has a variety of network architectures that provide auto-differentiation and support
GPUs to enable fast and efficient computation. The Python tool will be released through a
public repository to make the methods available to the scientific community.
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Appendix A

According to the Laplace approximation, we expand the loss function:

E(ω) =
1
2

N

∑
n=1

[y(n) − f(z(n), ω)]T [C δ
y (z

(n), ω)]−1[y(n) − f(z(n), ω)]

+
1
2

ωTC−1
ω ω, (A1)

around the point estimate ω̂ = ωMAP and use the optimality condition ∇E(ω̂) = 0, to
obtain:

E(ω) = E(ω̂) +
1
2

∆ωTH(ω̂)∆ω, (A2)

∆ω = ω− ω̂, (A3)

[H(ω̂)]ij =
∂E

∂ωi∂ωj
(ω̂), (A4)

and further (cf. Equation (13)):

p(ω|D) ∝ exp[−E(ω)]

∝ exp
[
−1

2
(ω− ω̂)TH(ω̂)(ω− ω̂)

]
. (A5)

Inserting Equations (12) and (A5) in the expression of the predictive distribution as
given by Equation (28) we find:

p(y|z,D) =
∫

p(y|z, ω)p(ω|D)dω

∝
∫

exp
{
−1

2
[y− f(z, ω)]T [C δ

y (z, ω)]−1[y− f(z, ω)]
}

× exp
[
−1

2
(ω− ω̂)TH(ω̂)(ω− ω̂)

]
dω. (A6)

In Equation (A6), the model function f(x, ω) can be approximated by a linear Taylor
expansion around ω̂, that is:

f(x, ω) ≈ f(x, ω̂) +Kω(x, ω̂)(ω− ω̂), (A7)

where:
Kω(x, ω) =

∂f
∂ω

(x, ω) (A8)

is the Jacobian of f with respect to ω. Substituting Equation (A7) into Equation (A6), approx-
imating C δ

y (z, ω) ≈ C δ
y (z, ω̂), and computing the integral over ω gives the

representation (32) for the predictive distribution p(y|z,D).
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Appendix B

For p(y|x, ω) = N (y, f(x, ω),Cδ
y = σ2

yI), we compute the predictive mean of the
output y given the input x, as

E(y) =
∫

yp(y|x,D)dy

≈
∫

yqθ(y|x)dy

=
∫

y
(∫

p(y|x, ω)qθ(ω)dω

)
dy

=
∫ (∫

yN (y; f(x, ω), σ2
yI)dy

)
qθ(ω)dω

=
∫

f(x, ω)qθ(ω)dω

≈ 1
T

T

∑
t=1

f(x, ωt),

and by using the result:

E(yyT) =
∫

yyT p(y|x,D)dy

≈
∫

yyTqθ(y|x)dy

=
∫

yyT
(∫

p(y|x, ω)qθ(ω)dω

)
dy

=
∫ (∫

yyTN (y; f(x, ω), σ2
yI)dy

)
qθ(ω)dω

=
∫
[σ2

yI+ f(x, ω)f(x, ω)T ]qθ(ω)dω

≈ σ2
yI+

1
T

T

∑
t=1

f(x, ωt)f(x, ωt)
T ,

the covariance matrix as

Cov(y) ≈ σ2
yI+

1
T

T

∑
t=1

f(x, ωt)f(x, ωt)
T −E(y)E(y)T .

The predictive mean and covariance matrix of a dropout network with assumed
density filtering given by Equations (87) and (88), respectively, can be computed in the
same manner by taking into account that in this case, the predictive power of the network
is given by

p(y|x, ω) = N (y; µL(x, ω), diag[vj,L(x, ω)]
Ny
j=1),

where µL = [µ1.L, . . . , µNL L]
T and vL = [v1.L, . . . , vNL L]

T are the output predictions and
their variances.

Appendix C

In this appendix, which is borrowed from [37], we show that the variational free
energy has the standard form representation of the dropout loss function (as the sum of a
square loss function and an L2 regularization term).
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For ω = {Wl , bl}L
l=1 and Wl = [wk,l ]

Nl−1
k=1 ∈ RNl×Nl−1 , we construct the variational

distribution qθ(ω) as

qθ(ω) =
L

∏
l=1

qθ(Wl , bl) =

(
L

∏
l=1

q(Wl)

)(
L

∏
l=1

q(bl)

)
, (A9)

with:

q(Wl) =
Nl−1

∏
k=1

q(wk,l), (A10)

q(wk,l) = pN (mk,l , σ2INl ) + (1− p)N (0, σ2INl ), (A11)

and:
q(bl) = N (nl , σ2INl ). (A12)

Here, p ∈ [0, 1] is an activation probability, σ > 0 a scalar, and Ml = [mk,l ]
Nl−1
k=1 and nl

are a variational parameter to be determined; thus, θ = {Ml , nl}L
l=1. The key point of

the derivation is the representation of q(wk,l) as a mixture of two Gaussians with the
same variance (cf. Equation (A11)). When the standard deviation σ tends towards 0, the
Gaussians tend to Dirac delta distributions showing that when sampling from the mixture
of the two Gaussians is equivalent to sampling from a Bernoulli distribution that returns
either the value 0 with probability 1− p or mk,l with probability p, that is:

q(wk,l) =


mk,l

0

with probability p

with probability 1− p

∣∣∣∣∣∣.
As a result, we obtain:

Wl = [w1,l , w2,l , . . . , wNl−1,l ]

= [m1,l , m2,l , . . . , mNl−1,l ]


z1,l−1 0 . . . 0

0 z2,l−1 . . . 0
...

...
. . .

...
0 0 . . . zNl−1,l−1


= MlZl−1,

where Zl−1 = diag[zk,l−1]
Nl−1
k=1 with zk,l−1 ∼ Bernoulli(p). Note that the binary variable

zk,l−1 corresponds to the unit k in layer l − 1 being dropped out as an input to layer l. For
bl , we take into account that q(bl) = limσ→0N (nl , σ2INl ) = δ(bl − nl); hence, in the limit
σ→ 0, bl is approximately deterministic, and we have bl ≈ nl .

The variational parameters Ml and nl are computed by minimizing the variational
free energy (39), that is:

F(θ,D) = −
∫

qθ(ω) log p(D|ω)dω + KL(qθ(ω)|p(ω)). (A13)

The two terms in the above equation are computed as follows.

1. For the first term, written as

∫
qθ(ω) log p(D|ω)dω =

N

∑
n=1

∫
qθ(ω) log p(y(n)|x(n), ω)dω, (A14)



Remote Sens. 2021, 13, 5061 29 of 34

we use the following reparameterization trick. Let ε ∼ q(ε) be an auxiliary variable
representing the stochasticity during the training, such that ω = t(ε, θ) for some
function t. Assuming that qθ(ω|ε) = δ(ω− t(ε, θ)), we find:

qθ(ω) =
∫

qθ(ω|ε) q(ε)dε =
∫

δ(ω− t(ε, θ)) q(ε)dε, (A15)

implying: ∫
qθ(ω) log p(y(n)|x(n), ω)dω

=
∫ ∫

δ(ω− t(ε, θ))q(ε) log p(y(n)|x(n), ω)dωdε

=
∫

q(ε) log p(y(n)|x(n), t(ε, θ))dε. (A16)

Computing the above integral by a Monte Carlo approach with a single sample
ε̂ ∼ q(ε), yields: ∫

qθ(ω) log p(y(n)|x(n), ω)dω = log p(y(n)|x(n), ω̂), (A17)

where ω̂ = t(ε̂, θ). In our case and in view of Equations (A10)–(A12), we reparametrize
the integrands by setting:

Wl = (Ml + σSl)Zl−1 + σSl(INl−1 − Zl−1), (A18)

bl = nl + σεl , (A19)

where:

Sl = [sk,l ]
Nl−1
k=1 , sk,l ∼ N (0, INl ), (A20)

Zl−1 = diag[zk,l−1]
Nl−1
k=1 , zk,l−1 ∼ Bernoulli(p), (A21)

εl ∼ N (0, INl ), (A22)

to obtain: ∫
qθ(ω) log p(D|ω)dω =

N

∑
n=1

log p(y(n)|x(n), ω̂n), (A23)

where:

ω̂n = {Ŵ(n)
l , b̂(n)

l }
L
l=1, (A24)

Ŵ
(n)
l = (Ml + σŜ

(n)
l )Ẑ

(n)
l−1 + σŜ

(n)
l (INl−1 − Ẑ

(n)
l−1), (A25)

b̂(n)
l = nl + σε̂

(n)
l , (A26)

for the realizations Ŝ(n)l , Ẑ(n)
l−1, and ε̂

(n)
l given by Equations (A20)–(A22). Taking the

limit σ→ 0, we find that the realizations Ŵ(n)
l and b̂(n)

l can be approximated as

Ŵ
(n)
l ≈ MlẐ

(n)
l−1, b̂(n)

l ≈ nl . (A27)

2. In the case of Wl , the second term in Equation (A13) is the KL divergence between a
mixture of Gaussians and a single Gaussian, that is:

KL(q(Wl)|p(Wl)) =
∫

q(Wl) log
[

q(Wl)

p(Wl)

]
dWl ,
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where q(Wl) is as in Equations (A10) and (A11) and p(Wl) = ∏
Nl−1
k=1 p(wk,l) with

p(wk,l) = N (0, INl ). This term can be evaluated by using the following result: For
K, N ∈ N, let p = (p1, . . . , pK) be a probability vector, q(x) = ∑K

k=1 pkN (x; µk, Σk)
with x ∈ RN a mixture of Gaussians with K components, and p(x) = N (x; 0, IN).
Then, for sufficiently large N, we have the approximation:

KL(q(x)|p(x)) ≈
K

∑
k=1

[
µT

k µk + tr(Σk)− N(1 + log 2π)− log |Σk|
]
. (A28)

Consequently, for large numbers of hidden units Nl , l = 1, . . . , L, we find:

KL(q(Wl)|p(Wl)) ≈ Nl Nl−1(σ
2 − log(σ2)− 1) +

p
2

Nl−1

∑
k=1

mT
k,lmk,l + C, (A29)

where C is a constant. In the case of bl , the KL divergence KL(q(bl)|p(bl)), where
(cf. Equation (A12)) q(bl) = N (nl , σ2INl ) and p(bl) = N (0, INl ), is a mixture of two
single Gaussian and can be analytically computed as

KL(q(bl)|p(bl)) =
1
2
[nT

l nl + Nl(σ
2 − log(σ2)− 1)] + C. (A30)

Collecting all the results, we obtain:

F(θ,D) = −
N

∑
n=1

log p(y(n)|x(n), ω̂n) +
1
2

L

∑
l=1

(
p
∥∥Ml

∥∥2
2 +

∥∥nl
∥∥2

2

)
.

Thus, the variational free energy F(θ,D) has the standard form representation as the sum
of a square loss function and an L2 regularization term.

Appendix D

In this appendix, we describe the uncertainty propagation based on assumed density
filtering by following the analysis given in [58].

The feed-forward operation of a neural network can be written as (cf. Equations (2)
and (3)):

yl = fl(yl−1; ωl) = gl(Wlyl−1 + bl),

where ωl = {Wl , bl}. Thus, each layer function fl(yl−1; ωl) is a nonlinear transformation
of the previous activation yl−1 parametrized by ωl . The deep neural network can then be
expressed as a succession of nonlinear layers:

f(x, ω) = fL(fL−1(. . . f1(y0; ω1)).

To formalize the deep probabilistic model, we replace each activation, including input
and output, by probability distributions. In particular, we assume that the joint density of
all activations is given by

p(y0:L) = p(y0)
L

∏
l=1

p(yl |yl−1),

p(yl |yl−1) = δ(yl − fl(yl−1; ωl)),

p(y0) =
Nl

∏
k=1
N (yk,0; xk, σ2

xk),



Remote Sens. 2021, 13, 5061 31 of 34

where p(y0:L) = p(y0, . . . , yL) andCδ
x = diag[σ2

xk]
Nx
k=1. Because this distribution is in-

tractable, we apply the assumed density filtering approach to the network activations. The
goal of this approach is to find a tractable approximation q(y0:L) of p(y0:L), that is:

p(y0:L) ≈ q(y0:L),

where:

q(y0:L) = q(y0)
L

∏
l=1

q(yl),

q(yl) =
Nl

∏
k=1
N (yk,l ; µk,l , vk,l),

q(y0) = p(y0),

and µk,l and vk,l are the mean and variance of the activation of unit k in layer l, respectively.
Thus, starting from input activation q(y0) = p(y0), we approximate subsequent layer
activations by independent Gaussian distributions q(yl). To compute the approximant
q(y0:L), we use an iterative process (layer by layer) initialized by q(y0) = p(y0). In
particular, for a layer l ≥ 1, we assume that q(y0), . . . , q(yl−1) are known, or equivalently,
that {(µl1 , vl1)}

l−1
l1=0 are known, and aim to compute (µl , vl), where µk,l = [µl ]k and vk,l =

[vl ]k. For this purpose, we take into account that the layer function fl transforms the
activation yl−1 into the distribution:

p̂(y0:l) = p(yl |yl−1)q(y0:l−1) = p(yl |yl−1)
l−1

∏
l1=0

q(yl1),

where p(yl |yl−1) = δ(yl − fl(yl−1; ωl)) is the true posterior at layer l and q(y0:l−1) =

∏l−1
l1=0 q(yl1) the previous approximating factor. Furthermore, we compute the first and

second-order moments of p̂(y0:l). This will be done in two steps. In the first step, we derive
the moments of an activation variable yk that belongs to all layers excluding the last layer,
i.e., yk is an element of y0:l−1 = {y0, . . . , yl−1}, while in the second step, we assume that yk
is an activation variable contained in the last layer yl = {y1,l , . . . , yNl ,l}. Thus,

1. For yk ∈ y0:l−1, we use the relations:

p̂(y0:l) = δ(yl − fl(yl−1; ωl))q(yk)q(yk,0:l−1),

and
∫

δ(x− x0)dx = 1 (yielding
∫
(yl − fl(yl−1; ωl))dyl = 1) to obtain:

Ep̂(yk) =
∫

p̂(y0:l)ykdy =
∫

q(yk)ykdyk = Eq(yk)
(yk), (A31)

where q(y(0:l−1)
k,0:l−1

) corresponds to the density of all variables excluding yk, and

dy = ∏l
l1=0 dyl1 , while:

2. For yk ∈ yl , we use the relations:

p̂(y0:l) = δ(yk,l − fk,l(yl−1; ωl)) δ(yk − fk,l(yl−1; ωl))q(y0:l−1),

and
∫

xδ(x − x0)dx = x0 (yielding
∫

δ(yk − fk,l(yl−1; ωl))dyk = fk,l(yl−1; ωl)), to
obtain:

Ep̂(yk) =
∫

p̂(y0:l)ykdy =
∫

q(yl−1) fk,l(yl−1; ωl)dyl−1

= Eq(yl−1)
( fk,l(yl−1; ωl)). (A32)
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Replacing yk with y2
k and repeating the above arguments, we find

Ep̂(y
2
k) = Eq(yk)

(y2
k), yk ∈ y0:l−1, (A33)

Ep̂(y
2
k) = Eq(yl−1)

( f 2
k,l(yl−1; ωl)), yk ∈ yl . (A34)

From Equations (A31) and (A33), we see that for all layers except for the lth layer,
the moments remain unchanged after the update. The moments for the lth layer will
be computed by means of Equations (A32) and (A34). For a linear activation function,
i.e., fk,l(yl−1; ωl) = ∑

Nl−1
i=1 wki,l−1yi,l−1 + bk,l , we find that the expressions of µk,l and vk,l

are given by Equations (78) and (79), respectively, while for a ReLU activation function
ReLU(x) = max(0, x), these are given by Equations (80) and (81), respectively.
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