elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Effective Neighborhood Feature Exploitation in Graph CNNs for Point Cloud Object-Part Segmentation

Megarajan, Pranav (2021) Effective Neighborhood Feature Exploitation in Graph CNNs for Point Cloud Object-Part Segmentation. DLR-Interner Bericht. DLR-IB-RM-OP-2021-220. Masterarbeit. Hochschule Bonn-Rhein-Sieg. 142 S.

[img] PDF - Nur DLR-intern zugänglich
14MB

Kurzfassung

Part segmentation is the task of semantic segmentation applied on objects and carries a wide range of applications from robotic manipulation to medical imaging. This work deals with the problem of part segmentation on raw, unordered point clouds of 3D objects. While pioneering works on deep learning for point clouds typically ignore taking advantage of local geometric structure around individual points, the subsequent methods proposed to extract features by exploiting local geometry have not yielded significant improvements either. In order to investigate further, a graph convolutional network (GCN) is used in this work in an attempt to increase the effectiveness of such neighborhood feature exploitation approaches. Most of the previous works also focus only on segmenting complete point cloud data. Considering the impracticality of such approaches, taking into consideration the real world scenarios where complete point clouds are scarcely available, this work proposes approaches to deal with partial point cloud segmentation. In the attempt to better capture neighborhood features, this work proposes a novel method to learn regional part descriptors which guide and refine the segmentation predictions. The proposed approach helps the network achieve state-of-the-art results of 86.4% mIoU on the ShapeNetPart dataset for methods which do not use any preprocessing techniques or voting strategies. In order to better deal with partial point clouds, this work also proposes new strategies to train and test on partial data. While achieving significant improvements compared to the baseline performance, the problem of partial point cloud segmentation is also viewed through an alternate lens of semantic shape completion. Semantic shape completion networks not only help deal with partial point cloud segmentation but also enrich the information captured by the system by predicting complete point clouds with corresponding semantic labels for each point. To this end, a new network for semantic shape completion is also proposed based on point completion network (PCN) which takes advantage of a graph convolution based hierarchical decoder for completion as well as segmentation. In addition to predicting complete point clouds, results show that the network is capable of reaching within a margin of 5% to the performance of dedicated segmentation networks for partial point cloud segmentation.

elib-URL des Eintrags:https://elib.dlr.de/147307/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:Effective Neighborhood Feature Exploitation in Graph CNNs for Point Cloud Object-Part Segmentation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Megarajan, PranavNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2021
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:142
Status:veröffentlicht
Stichwörter:object part segmentation, semantic segmentation, point clouds, 3D, deep learning
Institution:Hochschule Bonn-Rhein-Sieg
Abteilung:Department of Computer Science
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Intuitive Mensch-Roboter Schnittstelle [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Hinterlegt von: Hillenbrand, Ulrich
Hinterlegt am:13 Dez 2021 09:09
Letzte Änderung:13 Dez 2021 09:09

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.