Pargmann, Max and Maldonado Quinto, Daniel and Kesselheim, Stefan and Ebert, Jan (2023) Towards a Neural Network Based Flux Density Prediction - Using Generative Models to Enhance CSP Raytracing. In: 27th International Conference on Concentrating Solar Power and Chemical Energy Systems: Solar Power and Chemical Energy Systems, SolarPACES 2021, 030015-1. AIP Publishing. Solar PACES 2021, 2021-09-27 - 2021-09-30, Albuquerque (Vollständig Online). doi: 10.1063/5.0148765. ISSN 0094-243X.
PDF
828kB |
Abstract
Each solar tower power plant is designed for a pre-calculated optimal flux density distribution. Any deviation from this has a direct impact on the output power as well as the durability of the components. An accurate knowledge of the current and predicted flux density is therefore essential. Also, because this is one of the most important input variables for all subsequent power plant processes. But due to individual errors of each heliostat, this theoretical flux density is very difficult to obtain. This includes, that common methods for measuring the flux density are either inaccurate, complicated, or expensive. Although raytracers exists, which can predict a flux density by analytical calculations, such an approach does not reflect reality sufficiently. We present a novel AI based method to predict the flux density map, which is capable to include heliostat specific errors, without having to measure the heliostats surface. Furthermore, we compare the advantages and disadvantages of different network structures for this approach and show first results archiving at best a Peak Signal to Noise Ratio (PSNR) value of up to 27.8 using neural radiance fields (NeRFs) .
Item URL in elib: | https://elib.dlr.de/147258/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Towards a Neural Network Based Flux Density Prediction - Using Generative Models to Enhance CSP Raytracing | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | October 2023 | ||||||||||||||||||||
Journal or Publication Title: | 27th International Conference on Concentrating Solar Power and Chemical Energy Systems: Solar Power and Chemical Energy Systems, SolarPACES 2021 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1063/5.0148765 | ||||||||||||||||||||
Page Range: | 030015-1 | ||||||||||||||||||||
Publisher: | AIP Publishing | ||||||||||||||||||||
Series Name: | AIP Conf. Proc. | ||||||||||||||||||||
ISSN: | 0094-243X | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Neural Networks, NeRF, GAN, Flux Density Map, Heliostat | ||||||||||||||||||||
Event Title: | Solar PACES 2021 | ||||||||||||||||||||
Event Location: | Albuquerque (Vollständig Online) | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 27 September 2021 | ||||||||||||||||||||
Event End Date: | 30 September 2021 | ||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||
HGF - Program: | Energy System Design | ||||||||||||||||||||
HGF - Program Themes: | Digitalization and System Technology | ||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||
DLR - Program: | E SY - Energy System Technology and Analysis | ||||||||||||||||||||
DLR - Research theme (Project): | E - Energy System Technology | ||||||||||||||||||||
Location: | Köln-Porz | ||||||||||||||||||||
Institutes and Institutions: | Institute of Solar Research > Solar Power Plant Technology | ||||||||||||||||||||
Deposited By: | Pargmann, Max | ||||||||||||||||||||
Deposited On: | 13 Dec 2021 14:40 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:45 |
Repository Staff Only: item control page