Pargmann, Max und Maldonado Quinto, Daniel und Kesselheim, Stefan und Ebert, Jan (2023) Towards a Neural Network Based Flux Density Prediction - Using Generative Models to Enhance CSP Raytracing. In: 27th International Conference on Concentrating Solar Power and Chemical Energy Systems: Solar Power and Chemical Energy Systems, SolarPACES 2021, 030015-1. AIP Publishing. Solar PACES 2021, 2021-09-27 - 2021-09-30, Albuquerque (Vollständig Online). doi: 10.1063/5.0148765. ISSN 0094-243X.
PDF
828kB |
Kurzfassung
Each solar tower power plant is designed for a pre-calculated optimal flux density distribution. Any deviation from this has a direct impact on the output power as well as the durability of the components. An accurate knowledge of the current and predicted flux density is therefore essential. Also, because this is one of the most important input variables for all subsequent power plant processes. But due to individual errors of each heliostat, this theoretical flux density is very difficult to obtain. This includes, that common methods for measuring the flux density are either inaccurate, complicated, or expensive. Although raytracers exists, which can predict a flux density by analytical calculations, such an approach does not reflect reality sufficiently. We present a novel AI based method to predict the flux density map, which is capable to include heliostat specific errors, without having to measure the heliostats surface. Furthermore, we compare the advantages and disadvantages of different network structures for this approach and show first results archiving at best a Peak Signal to Noise Ratio (PSNR) value of up to 27.8 using neural radiance fields (NeRFs) .
elib-URL des Eintrags: | https://elib.dlr.de/147258/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Towards a Neural Network Based Flux Density Prediction - Using Generative Models to Enhance CSP Raytracing | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Oktober 2023 | ||||||||||||||||||||
Erschienen in: | 27th International Conference on Concentrating Solar Power and Chemical Energy Systems: Solar Power and Chemical Energy Systems, SolarPACES 2021 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1063/5.0148765 | ||||||||||||||||||||
Seitenbereich: | 030015-1 | ||||||||||||||||||||
Verlag: | AIP Publishing | ||||||||||||||||||||
Name der Reihe: | AIP Conf. Proc. | ||||||||||||||||||||
ISSN: | 0094-243X | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Neural Networks, NeRF, GAN, Flux Density Map, Heliostat | ||||||||||||||||||||
Veranstaltungstitel: | Solar PACES 2021 | ||||||||||||||||||||
Veranstaltungsort: | Albuquerque (Vollständig Online) | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 27 September 2021 | ||||||||||||||||||||
Veranstaltungsende: | 30 September 2021 | ||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Solare Kraftwerktechnik | ||||||||||||||||||||
Hinterlegt von: | Pargmann, Max | ||||||||||||||||||||
Hinterlegt am: | 13 Dez 2021 14:40 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags