Drögemüller, Justus und Garcia, Carlos X. und Gambaro, Elena und Suppa, Michael und Steil, Jochen und Roa Garzon, Máximo Alejandro (2021) Automatic Generation of Realistic Training Data for Learning Parallel-jaw Grasping from Synthetic Stereo Images. In: 20th International Conference on Advanced Robotics, ICAR 2021. IEEE Int. Conf. Advanced Robotics, 2021-12-07 - 2021-12-10, Slovenia. doi: 10.1109/ICAR53236.2021.9659350. ISBN 978-166543684-7.
PDF
501kB |
Kurzfassung
This paper proposes a novel approach to automatically generate labeled training data for predicting parallel-jaw grasps from stereo-matched depth images. We generate realistic depth images using Semi-Global Matching to compute disparity maps from synthetic data, which allows producing images that mimic the typical artifacts from real stereo matching in our data, thus reducing the gap from simulation to real execution. Our pipeline automatically generates grasp annotations for single or multiple objects on the synthetically rendered scenes, avoiding any manual image pre-processing steps such as inpainting or denoising. The labeled data is then used to train a CNN-model that predicts parallel-jaw grasps, even in scenarios with large amount of unknown depth values. We further show that scene properties such as the presence of obstacles (a bin, for instance) can be added to our pipeline, and the training process results in grasp prediction success rates of up to 90%
elib-URL des Eintrags: | https://elib.dlr.de/147156/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | Automatic Generation of Realistic Training Data for Learning Parallel-jaw Grasping from Synthetic Stereo Images | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Dezember 2021 | ||||||||||||||||||||||||||||
Erschienen in: | 20th International Conference on Advanced Robotics, ICAR 2021 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
DOI: | 10.1109/ICAR53236.2021.9659350 | ||||||||||||||||||||||||||||
ISBN: | 978-166543684-7 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | grasp prediction, grasp learning | ||||||||||||||||||||||||||||
Veranstaltungstitel: | IEEE Int. Conf. Advanced Robotics | ||||||||||||||||||||||||||||
Veranstaltungsort: | Slovenia | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 Dezember 2021 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 10 Dezember 2021 | ||||||||||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonomie & Geschicklichkeit [RO] | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Autonomie und Fernprogrammierung | ||||||||||||||||||||||||||||
Hinterlegt von: | Roa Garzon, Dr. Máximo Alejandro | ||||||||||||||||||||||||||||
Hinterlegt am: | 10 Dez 2021 00:12 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags