Sziburis, Tim und Nowak, Markus und Brunelli, Davide (2021) Prototype Reduction on sEMG Data for Instance-based Gesture Learning towards Real-time Prosthetic Control. In: 14th International Conference on Bio-Inspired Systems and Signal Processing, BIOSIGNALS 2021 - Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021. BIOSIGNALS, 2021-02-11 - 2021-02-13, virtuell. doi: 10.5220/0010327500002865. ISBN 978-989758490-9.
PDF
- Nur DLR-intern zugänglich
349kB |
Offizielle URL: https://www.scitepress.org/Papers/2021/103275/pdf/index.html
Kurzfassung
Current systems of electromyographic prostheses are controlled by machine learning techniques for gesture detection. Instance-based learning showed promising results concerning classification accuracy and robustness without explicit model training. However, it suffers from high computational demands in the prediction phase, which can be problematic in real-time scenarios. This paper aims at combining such learning schemes with the concept of prototype reduction to decrease the amount of data processed in each prediction step. First, a suitability assessment of state-of-research reduction algorithms is conducted. This is followed by a practical feasibility analysis of the approach. For this purpose, several datasets of signal classes from exerting specific gestures are captured with an eight-channel EMG armband. Based on the recorded data, prototype reduction algorithms are comparatively applied. The dataset reduction is characterized by the time needed for reduction as well as the possible data reduction rate. The classification accuracy when using the reduced set in cross-validation is analyzed with an exemplary kNN classifier. While showing promising values in reduction time as well as excellent classification accuracy, a reduction rate of over 99\% can be achieved in all tested gesture configurations. The reduction algorithms LVQ3 and DSM turn out to be particularly convenient.
elib-URL des Eintrags: | https://elib.dlr.de/147144/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Prototype Reduction on sEMG Data for Instance-based Gesture Learning towards Real-time Prosthetic Control | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2021 | ||||||||||||||||
Erschienen in: | 14th International Conference on Bio-Inspired Systems and Signal Processing, BIOSIGNALS 2021 - Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.5220/0010327500002865 | ||||||||||||||||
ISBN: | 978-989758490-9 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Surface Electromyography, Embedded Systems, Wearable Systems, Prototype Reduction, Dataset Reduction, Instance-based Learning, Gesture Recognition, Machine Learning, Prosthetics | ||||||||||||||||
Veranstaltungstitel: | BIOSIGNALS | ||||||||||||||||
Veranstaltungsort: | virtuell | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 11 Februar 2021 | ||||||||||||||||
Veranstaltungsende: | 13 Februar 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Intelligente Mobilität (RM) [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||||||
Hinterlegt von: | Nowak, Markus | ||||||||||||||||
Hinterlegt am: | 09 Dez 2021 17:21 | ||||||||||||||||
Letzte Änderung: | 22 Jul 2024 15:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags