elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Prototype Reduction on sEMG Data for Instance-based Gesture Learning towards Real-time Prosthetic Control

Sziburis, Tim und Nowak, Markus und Brunelli, Davide (2021) Prototype Reduction on sEMG Data for Instance-based Gesture Learning towards Real-time Prosthetic Control. In: 14th International Conference on Bio-Inspired Systems and Signal Processing, BIOSIGNALS 2021 - Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021. BIOSIGNALS, 2021-02-11 - 2021-02-13, virtuell. doi: 10.5220/0010327500002865. ISBN 978-989758490-9.

[img] PDF - Nur DLR-intern zugänglich
349kB

Offizielle URL: https://www.scitepress.org/Papers/2021/103275/pdf/index.html

Kurzfassung

Current systems of electromyographic prostheses are controlled by machine learning techniques for gesture detection. Instance-based learning showed promising results concerning classification accuracy and robustness without explicit model training. However, it suffers from high computational demands in the prediction phase, which can be problematic in real-time scenarios. This paper aims at combining such learning schemes with the concept of prototype reduction to decrease the amount of data processed in each prediction step. First, a suitability assessment of state-of-research reduction algorithms is conducted. This is followed by a practical feasibility analysis of the approach. For this purpose, several datasets of signal classes from exerting specific gestures are captured with an eight-channel EMG armband. Based on the recorded data, prototype reduction algorithms are comparatively applied. The dataset reduction is characterized by the time needed for reduction as well as the possible data reduction rate. The classification accuracy when using the reduced set in cross-validation is analyzed with an exemplary kNN classifier. While showing promising values in reduction time as well as excellent classification accuracy, a reduction rate of over 99\% can be achieved in all tested gesture configurations. The reduction algorithms LVQ3 and DSM turn out to be particularly convenient.

elib-URL des Eintrags:https://elib.dlr.de/147144/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Prototype Reduction on sEMG Data for Instance-based Gesture Learning towards Real-time Prosthetic Control
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sziburis, Timtim.sziburis (at) alumni.unitn.ithttps://orcid.org/0000-0002-7741-1276NICHT SPEZIFIZIERT
Nowak, Markusmarkus.nowak (at) dlr.dehttps://orcid.org/0000-0002-0840-5155NICHT SPEZIFIZIERT
Brunelli, DavideUniversity of Trento, ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2021
Erschienen in:14th International Conference on Bio-Inspired Systems and Signal Processing, BIOSIGNALS 2021 - Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.5220/0010327500002865
ISBN:978-989758490-9
Status:veröffentlicht
Stichwörter:Surface Electromyography, Embedded Systems, Wearable Systems, Prototype Reduction, Dataset Reduction, Instance-based Learning, Gesture Recognition, Machine Learning, Prosthetics
Veranstaltungstitel:BIOSIGNALS
Veranstaltungsort:virtuell
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:11 Februar 2021
Veranstaltungsende:13 Februar 2021
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Intelligente Mobilität (RM) [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik
Hinterlegt von: Nowak, Markus
Hinterlegt am:09 Dez 2021 17:21
Letzte Änderung:22 Jul 2024 15:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.