Sziburis, Tim und Nowak, Markus und Brunelli, Davide (2021) KNN Learning Techniques for Proportional Myocontrol in Prosthetics. In: ICNR 2020: Converging Clinical and Engineering Research on Neurorehabilitation IV. International Conference on NeuroRehabilitation, 2021, virtuell. doi: 10.1007/978-3-030-70316-5_109. ISSN 2195-3562.
PDF
186kB |
Offizielle URL: https://link.springer.com/chapter/10.1007/978-3-030-70316-5_109
Kurzfassung
This work has been conducted in the context of pattern-recognition-based control for electromyographic prostheses. It presents a k-nearest neighbour (kNN) classification technique for gesture recognition, extended by a proportionality scheme. The methods proposed are practically implemented and validated. Datasets are captured by means of a state-of-the-art 8-channel electromyography (EMG) armband positioned on the forearm. Based on this data, the influence of kNNs parameters is analyzed in pilot experiments. Moreover, the effect of proportionality scaling and rest thresholding schemes is investigated. A randomized, double-blind user study is conducted to compare the implemented method with the state-of-research algorithm Ridge Regression with Random Fourier Features (RR-RFF) for different levels of gesture exertion. The results from these experiments show a statistically significant improvement in favour of the kNN-based algorithm.
elib-URL des Eintrags: | https://elib.dlr.de/147141/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | KNN Learning Techniques for Proportional Myocontrol in Prosthetics | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2021 | ||||||||||||||||
Erschienen in: | ICNR 2020: Converging Clinical and Engineering Research on Neurorehabilitation IV | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1007/978-3-030-70316-5_109 | ||||||||||||||||
ISSN: | 2195-3562 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | kNN, myocontrol, prosthetics | ||||||||||||||||
Veranstaltungstitel: | International Conference on NeuroRehabilitation | ||||||||||||||||
Veranstaltungsort: | virtuell | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsdatum: | 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Intelligente Mobilität (RM) [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||||||
Hinterlegt von: | Nowak, Markus | ||||||||||||||||
Hinterlegt am: | 09 Dez 2021 17:17 | ||||||||||||||||
Letzte Änderung: | 14 Okt 2024 15:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags