Lyssenko, Maria und Gladisch, Christoph und Heinzemann, Christian und Woehrle, Matthias und Triebel, Rudolph (2021) Instance Segmentation in CARLA: Methodology and Analysis for Pedestrian-oriented Synthetic Data Generation in Crowded Scenes. In: 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021, Seiten 988-996. IEEE. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021-10-11 - 2021-10-17, Montreal, BC, Canada. doi: 10.1109/ICCVW54120.2021.00115. ISBN 978-166540191-3. ISSN 1550-5499.
PDF
1MB |
Kurzfassung
The evaluation of camera-based perception functions in automated driving (AD) is a significant challenge and requires large-scale high-quality datasets. Recently proposed metrics for safety evaluation additionally require detailed per-instance annotations of dynamic properties such as distance and velocities that may not be available in openly accessible AD datasets. Synthetic data from 3D simulators like CARLA may provide a solution to this problem as labeled data can be produced in a structured manner. However, CARLA currently lacks instance segmentation ground truth. In this paper, we present a back projection pipeline that allows us to obtain accurate instance segmentation maps for CARLA, which is necessary for precise per-instance ground truth information. Our evaluation results show that per-pedestrian depth aggregation obtained from our instance segmentation is more precise than previously available approximations based on bounding boxes especially in the context of crowded scenes in urban automated driving.
elib-URL des Eintrags: | https://elib.dlr.de/147025/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||||||
Titel: | Instance Segmentation in CARLA: Methodology and Analysis for Pedestrian-oriented Synthetic Data Generation in Crowded Scenes | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2021 | ||||||||||||||||||||||||
Erschienen in: | 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/ICCVW54120.2021.00115 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 988-996 | ||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||
ISSN: | 1550-5499 | ||||||||||||||||||||||||
ISBN: | 978-166540191-3 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Autonomous driving, pedestrian detection | ||||||||||||||||||||||||
Veranstaltungstitel: | 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) | ||||||||||||||||||||||||
Veranstaltungsort: | Montreal, BC, Canada | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 11 Oktober 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 17 Oktober 2021 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||
Hinterlegt von: | Triebel, Rudolph | ||||||||||||||||||||||||
Hinterlegt am: | 09 Dez 2021 09:57 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags