Lyssenko, Maria und Gladisch, Christoph und Heinzemann, Christian und Woehrle, Matthias und Triebel, Rudolph (2021) Instance Segmentation in CARLA: Methodology and Analysis for Pedestrian-oriented Synthetic Data Generation in Crowded Scenes. In: 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021, Seiten 988-996. IEEE. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021-10-11 - 2021-10-17, Montreal, BC, Canada. doi: 10.1109/ICCVW54120.2021.00115. ISBN 978-166540191-3. ISSN 1550-5499.
|
PDF
1MB |
Kurzfassung
The evaluation of camera-based perception functions in automated driving (AD) is a significant challenge and requires large-scale high-quality datasets. Recently proposed metrics for safety evaluation additionally require detailed per-instance annotations of dynamic properties such as distance and velocities that may not be available in openly accessible AD datasets. Synthetic data from 3D simulators like CARLA may provide a solution to this problem as labeled data can be produced in a structured manner. However, CARLA currently lacks instance segmentation ground truth. In this paper, we present a back projection pipeline that allows us to obtain accurate instance segmentation maps for CARLA, which is necessary for precise per-instance ground truth information. Our evaluation results show that per-pedestrian depth aggregation obtained from our instance segmentation is more precise than previously available approximations based on bounding boxes especially in the context of crowded scenes in urban automated driving.
| elib-URL des Eintrags: | https://elib.dlr.de/147025/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||||||
| Titel: | Instance Segmentation in CARLA: Methodology and Analysis for Pedestrian-oriented Synthetic Data Generation in Crowded Scenes | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 2021 | ||||||||||||||||||||||||
| Erschienen in: | 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| DOI: | 10.1109/ICCVW54120.2021.00115 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 988-996 | ||||||||||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||||||||||
| ISSN: | 1550-5499 | ||||||||||||||||||||||||
| ISBN: | 978-166540191-3 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Autonomous driving, pedestrian detection | ||||||||||||||||||||||||
| Veranstaltungstitel: | 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) | ||||||||||||||||||||||||
| Veranstaltungsort: | Montreal, BC, Canada | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 11 Oktober 2021 | ||||||||||||||||||||||||
| Veranstaltungsende: | 17 Oktober 2021 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||
| Hinterlegt von: | Triebel, Rudolph | ||||||||||||||||||||||||
| Hinterlegt am: | 09 Dez 2021 09:57 | ||||||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags