elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Measuring raw-material criticality of product systems through an economic product importance indicator: a case study of battery-electric vehicles

Lütkehaus, Hauke and Pade, Christian and Oswald, Matthias and Brand, Urte and Naegler, Tobias and Vogt, Thomas (2021) Measuring raw-material criticality of product systems through an economic product importance indicator: a case study of battery-electric vehicles. International Journal of Life Cycle Assessment. Springer. doi: 10.1007/s11367-021-02002-z. ISSN 0948-3349.

[img] PDF - Published version
3MB

Official URL: https://link.springer.com/article/10.1007%2Fs11367-021-02002-z

Abstract

Purpose: The concept of criticality concerns the probability and the possible impacts of shortages in raw-material supply and is usually applied to regional economies or specific industries. With more and more products being highly dependent on potentially critical raw materials, efforts are being made to also incorporate criticality into the framework of life cycle sustainability assessment (LCSA). However, there is still some need for methodological development of indicators to measure raw-material criticality in LCSA. Methods: We therefore introduce "economic product importance" (EPI) as a novel parameter for the product-specific evaluation of the relevance and significance of a certain raw material for a particular product system. We thereby consider both the actual raw-material flows (life cycle inventories) and the life cycle cost. The EPI thus represents a measure for the material-specific product-system vulnerability (another component being the substitutability). Combining the product-system vulnerability of a specific product system towards a certain raw material with the supply disruption probability of that same raw material then yields the product-system specific overall criticality with regard to that raw material. In order to demonstrate our novel approach, we apply it to a case study on a battery-electric vehicle. Results: Since our approach accounts for the actual amounts of raw materials used in a product and relates their total share of costs to the overall costs of the product, no under- or over-estimation of the mere presence of the raw materials with respect to their relevance for the product system occurs. Consequently, raw materials, e.g. rare earth elements, which are regularly rated highly critical, do not necessarily reach higher criticality ranks within our approach, if they are either needed in very small amounts only or if their share in total costs of the respective product system is very low. Accordingly, in our case study on a battery-electric vehicle product system, most rare earth elements are ranked less critical than bulk materials such as copper or aluminium. Conclusion: Our EPI approach constitutes a step forward towards a methodology for the raw-material criticality assessment within the LCSA framework, mainly because it allows a product-specific evaluation of product-system vulnerability. Furthermore, it is compatible with common methods for the supply disruption probability calculation -- such as GeoPolRisk, ESP or ESSENZ -- as well as with available substitutability evaluations. The practicability and usefulness of our approach has been shown by applying it to a battery-electric vehicle.

Item URL in elib:https://elib.dlr.de/146858/
Document Type:Article
Additional Information:Open Access publication via DEAL
Title:Measuring raw-material criticality of product systems through an economic product importance indicator: a case study of battery-electric vehicles
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
Lütkehaus, HaukeHauke.Luetkehaus (at) dlr.deUNSPECIFIED
Pade, ChristianChristian.Pade (at) dlr.deUNSPECIFIED
Oswald, MatthiasMatthias.Oswald (at) dlr.deUNSPECIFIED
Brand, UrteUrte.Brand (at) dlr.deUNSPECIFIED
Naegler, TobiasTobias.Naegler (at) dlr.dehttps://orcid.org/0000-0003-2390-1672
Vogt, ThomasT.Vogt (at) dlr.dehttps://orcid.org/0000-0002-6268-8694
Date:December 2021
Journal or Publication Title:International Journal of Life Cycle Assessment
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
DOI :10.1007/s11367-021-02002-z
Publisher:Springer
ISSN:0948-3349
Status:Published
Keywords:Raw-material criticality · Resource criticality · Critical materials · Critical resources · Life cycle assessment, LCA · Life cycle sustainability assessment, LCSA · Substitutability · Battery electric vehicle, BEV
HGF - Research field:Energy
HGF - Program:Energy System Design
HGF - Program Themes:Energy System Transformation
DLR - Research area:Energy
DLR - Program:E SY - Energy System Technology and Analysis
DLR - Research theme (Project):E - Systems Analysis and Technology Assessment
Location: Oldenburg
Institutes and Institutions:Institute of Networked Energy Systems > Energy Systems Analysis, OL
Deposited By: Pade, Christian
Deposited On:07 Dec 2021 17:09
Last Modified:07 Dec 2021 17:09

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.