Coquelin, Daniel and Debus, Charlotte and Götz, Markus and von der Lehr, Fabrice and Kahn, James and Siggel, Martin and Streit, Achim (2021) Accelerating Neural Network Training with Distributed Asynchronous and Selective Optimization (DASO). [Other]
![]() |
PDF
441kB |
Official URL: https://arxiv.org/abs/2104.05588
Abstract
With increasing data and model complexities, the time required to train neural networks has become prohibitively large. To address the exponential rise in training time, users are turning to data parallel neural networks (DPNN) to utilize large-scale distributed resources on computer clusters. Current DPNN approaches implement the network parameter updates by synchronizing and averaging gradients across all processes with blocking communication operations. This synchronization is the central algorithmic bottleneck. To combat this, we introduce the Distributed Asynchronous and Selective Optimization (DASO) method which leverages multi-GPU compute node architectures to accelerate network training. DASO uses a hierarchical and asynchronous communication scheme comprised of node-local and global networks while adjusting the global synchronization rate during the learning process. We show that DASO yields a reduction in training time of up to 34% on classical and state-of-the-art networks, as compared to other existing data parallel training methods.
Item URL in elib: | https://elib.dlr.de/146819/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Other | ||||||||||||||||||||||||||||||||
Title: | Accelerating Neural Network Training with Distributed Asynchronous and Selective Optimization (DASO) | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 12 April 2021 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | ArXiV | ||||||||||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||
Number of Pages: | 12 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Computer Science, Machine Learning, Neural Network, Optimization, Distributed Training, Data parallelism | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Tasks SISTEC | ||||||||||||||||||||||||||||||||
Location: | Köln-Porz | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Institut of Simulation and Software Technology > High Performance Computing Institute for Software Technology Institute for Software Technology > High-Performance Computing | ||||||||||||||||||||||||||||||||
Deposited By: | von der Lehr, Fabrice | ||||||||||||||||||||||||||||||||
Deposited On: | 09 Dec 2021 09:05 | ||||||||||||||||||||||||||||||||
Last Modified: | 16 Dec 2021 13:33 |
Repository Staff Only: item control page