elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

An Adaptive Control Approach with Automatic Gain Blending for Robot Manipulators under Dynamic Uncertainties

Kirner, Annika (2021) An Adaptive Control Approach with Automatic Gain Blending for Robot Manipulators under Dynamic Uncertainties. DLR-Interner Bericht. DLR-IB-RM-OP-2021-219. Masterarbeit. Technical University of Munich.

[img] PDF - Nur DLR-intern zugänglich
7MB

Kurzfassung

To ensure convergence of the tracking errors despite uncertainties in the inertial parameters of a robot manipulator, adaptive tracking controllers can be applied, which adapt a parameter estimate on-line. The common adaptive robot controllers feature a proportional-derivative (PD) feedback of the tracking errors. Tuning the PD gains can be challenging due to tradeoffs between desired control performance and the risk of exceeding feasible limits of actuators. Far from the desired equilibria, small gains are beneficial in order to avoid actuator saturation. However, low gains usually come at the cost of a degraded tracking performance, especially in the presence of model uncertainties. The thesis addresses the problem in proposing a combined adaptive tracking controller for robot manipulators. It adapts a parameter estimate utilizing a natural adaptation law. Moreover, nominal high gains and global low gains are adaptively blended depending on the current tracking errors and the estimated uncertainties. In general, the blended gains decrease with growing tracking errors. However, they are shifted towards the nominal high gains if the errors remain large or if model uncertainties are estimated to affect the control performance. Consequently, the current weighting between ensuring a desired control performance and avoiding large actuation effort is automatically adapted. A recently proposed adaptation mechanism that can blend two control actions depending on the current tracking errors is taken as a starting point for the controller development. The thesis extends the approach such that the current estimated uncertainties can be included and unifies it with a parameter adaptation law to obtain a combined adaptive controller. A mathematical proof for the global uniform convergence of the tracking errors and the boundedness of the parameter estimation error is provided. Simulative and experimental results with a lightweight robot manipulator with seven degrees of freedom validate the theoretic results.

elib-URL des Eintrags:https://elib.dlr.de/146748/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:An Adaptive Control Approach with Automatic Gain Blending for Robot Manipulators under Dynamic Uncertainties
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kirner, Annikaannika.kirner (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2021
Referierte Publikation:Nein
Open Access:Nein
Status:veröffentlicht
Stichwörter:Adaptive Control, Automatic Gain Blending, Natural Adaptation Law
Institution:Technical University of Munich
Abteilung:TUM School of Engineering and Design - Chair of Automatic Control
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Roboterdynamik & Simulation [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Analyse und Regelung komplexer Robotersysteme
Hinterlegt von: Wu, Xuwei
Hinterlegt am:06 Dez 2021 11:10
Letzte Änderung:06 Dez 2021 11:10

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.