Boerdijk, Wout und Sundermeyer, Martin und Durner, Maximilian und Triebel, Rudolph (2021) "What's This?" - Learning to Segment Unknown Objects from Manipulation Sequences. In: 2021 IEEE International Conference on Robotics and Automation, ICRA 2021. IEEE Robotics and Automation Society. 2021 IEEE International Conference on Robotics and Automation, ICRA 2021, 2021-05-31 - 2021-06-05, Xi'an, China / online (hybrid). doi: 10.1109/ICRA48506.2021.9560806. ISBN 978-172819077-8. ISSN 1050-4729.
PDF
4MB |
Kurzfassung
We present a novel framework for self-supervised grasped object segmentation with a robotic manipulator. Our method successively learns an agnostic foreground segmentation followed by a distinction between manipulator and object solely by observing the motion between consecutive RGB frames. In contrast to previous approaches, we propose a single, end-toend trainable architecture which jointly incorporates motion cues and semantic knowledge. Furthermore, while the motion of the manipulator and the object are substantial cues for our algorithm, we present means to robustly deal with distraction objects moving in the background, as well as with completely static scenes. Our method neither depends on any visual registration of a kinematic robot or 3D object models, nor on precise hand eye calibration or any additional sensor data. By extensive experimental evaluation we demonstrate the superiority of our framework and provide detailed insights on its capability of dealing with the aforementioned extreme cases of motion. We also show that training a semantic segmentation network with the automatically labeled data achieves results on par with manually annotated training data. Code and pretrained model are available at https://github.com/DLR-RM/DistinctNet.
elib-URL des Eintrags: | https://elib.dlr.de/146603/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | "What's This?" - Learning to Segment Unknown Objects from Manipulation Sequences | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2021 | ||||||||||||||||||||
Erschienen in: | 2021 IEEE International Conference on Robotics and Automation, ICRA 2021 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/ICRA48506.2021.9560806 | ||||||||||||||||||||
Verlag: | IEEE Robotics and Automation Society | ||||||||||||||||||||
ISSN: | 1050-4729 | ||||||||||||||||||||
ISBN: | 978-172819077-8 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Deep Learning for Visual Perception, Semantic Segmentation, Computer Vision for Automation | ||||||||||||||||||||
Veranstaltungstitel: | 2021 IEEE International Conference on Robotics and Automation, ICRA 2021 | ||||||||||||||||||||
Veranstaltungsort: | Xi'an, China / online (hybrid) | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 31 Mai 2021 | ||||||||||||||||||||
Veranstaltungsende: | 5 Juni 2021 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||
Hinterlegt von: | Boerdijk, Wout | ||||||||||||||||||||
Hinterlegt am: | 08 Dez 2021 14:22 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags