Strohmann, Tobias und Starostin-Penner, Denis und Breitbarth, Eric und Requena, Guillermo (2021) Automatic detection of fatigue crack paths using digital image correlation and convolutional neural networks. Fatigue & Fracture of Engineering Materials & Structures (44), Seiten 1336-1348. Wiley. doi: 10.1111/ffe.13433. ISSN 8756-758X.
PDF
- Verlagsversion (veröffentlichte Fassung)
15MB |
Kurzfassung
The occurrence of fatigue cracks is an inherent part of the design of engineering structures subjected to nonconstant loads. Thus, the accurate description of cracks in terms of location and evolution during service conditions is mandatory to fulfill safety-relevant criteria. In the present work, we implement a deep convolutional neural network to detect crack paths together with their crack tips based on displacement fields obtained using digital image correlation. To this purpose, fatigue crack propagation experiments were performed for AA2024-T3 rolled sheets using specimens with different geometries. Several hundred datasets were acquired by digital image correlation during the experiments. A part of the displacement data from one of the specimens was then used to train the neural network. The results show that the method can accurately detect the shape and evolution of the cracks in all specimens. Adding synthetic data generated by finite element analyses to the training step improved the accuracy for cracks with stress intensity factors that exceeded the range of the original training data.
elib-URL des Eintrags: | https://elib.dlr.de/146529/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Automatic detection of fatigue crack paths using digital image correlation and convolutional neural networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 14 Januar 2021 | ||||||||||||||||||||
Erschienen in: | Fatigue & Fracture of Engineering Materials & Structures | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1111/ffe.13433 | ||||||||||||||||||||
Seitenbereich: | Seiten 1336-1348 | ||||||||||||||||||||
Verlag: | Wiley | ||||||||||||||||||||
ISSN: | 8756-758X | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | 2024 T3 aluminum alloy, artificial neural network (ANN), crack lengths, fatigue crack growth, mechanical testing | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Strukturwerkstoffe und Bauweisen | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Metallische Strukturen und hybride Werkstoffsysteme | ||||||||||||||||||||
Hinterlegt von: | Strohmann, Tobias | ||||||||||||||||||||
Hinterlegt am: | 13 Dez 2021 09:33 | ||||||||||||||||||||
Letzte Änderung: | 13 Dez 2021 09:33 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags