Strohmann, Tobias und Melching, David und Breitbarth, Eric und Requena, Guillermo (2021) Automatic detection of fatigue crack paths using digital image correlation and deep neural networks. Materials Week 2021, 2021-09-07 - 2021-09-09, online.
PDF
1MB |
Kurzfassung
Fatigue cracks are an inherent part in the lightweight design of engineering structures subjected to non-constant loads. Particularly important for airframe structures are accurate design data for crack initiation, stable fatigue crack propagation (FCP) and its rapid increase until ultimate failure. Non-straight crack paths are difficult or time-consuming to detect and monitor in laboratory experiments as well as in service using traditional techniques such as direct current potential drop (DCPD) or dye penetrant inspection. To this purpose, we implemented a deep convolutional neural network (CNN) to detect crack paths and especially their crack tips based on full-field displacement data obtained by 3D digital image correlation (DIC). Therefore, fatigue crack propagation experiments were performed for AA2024-T3 rolled sheet materials using 160 mm and 950 mm wide MT specimens. During the experiments, several hundred datasets were acquired by DIC and labelled by optical analysis. A part of the displacement data from one of the specimens was then used to train the neural network. The results show that the method can accurately detect the shape and evolution of cracks in all specimens based on the x and y displacements.
elib-URL des Eintrags: | https://elib.dlr.de/146518/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Automatic detection of fatigue crack paths using digital image correlation and deep neural networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | September 2021 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Fatigue cracks, digital image correlation, neural networks, deep learning | ||||||||||||||||||||
Veranstaltungstitel: | Materials Week 2021 | ||||||||||||||||||||
Veranstaltungsort: | online | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 7 September 2021 | ||||||||||||||||||||
Veranstaltungsende: | 9 September 2021 | ||||||||||||||||||||
Veranstalter : | Deutsche Gesellschaft für Materialkunde e.V. (DGM) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Strukturwerkstoffe und Bauweisen | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Metallische Strukturen und hybride Werkstoffsysteme | ||||||||||||||||||||
Hinterlegt von: | Strohmann, Tobias | ||||||||||||||||||||
Hinterlegt am: | 03 Dez 2021 09:31 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags