Martin del Campo Becerra, Gustavo and Serafín García, Sergio Alejandro and Reigber, Andreas and Ortega Cisneros, Susana and Nannini, Matteo (2021) Resolution Enhancement of Spatial Parametric Methods via Regularization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp. 11335-11351. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3120281. ISSN 1939-1404.
![]() |
PDF
- Only accessible within DLR
- Published version
16MB |
Official URL: https://ieeexplore.ieee.org/document/9573368?source=authoralert
Abstract
Abstract—The spatial spectral estimation problem has applications in a variety of fields, including radar, telecommunications, and biomedical engineering. Among the different ap-proaches for estimating the spatial spectral pattern, there are several parametric methods, as the well-known multiple signal classification (MUSIC). Parametric methods like MUSIC are reduced to the problem of selecting an integer-valued parameter [so-called model order (MO)], which describes the number of signals impinging on the sensors array. Commonly, the best MO corresponds to the actual number of targets, nonetheless, relatively large model orders also retrieve good-fitted responses when the data generating mechanism is more complex than the models used to fit it. Most commonly employed MO selection (MOS) tools are based on information theoretic criteria [e.g., Akaike information criterion (AIC), minimum description length (MDL) and efficient detection criterion (EDC)]. Normally, the implementation of these tools involves the eigenvalues decomposition of the data covariance matrix. A major drawback of such parametric methods (together with certain MOS tool) is the drastic accuracy decrease in adverse scenarios, particularly, with low signal-to-noise ratio, since the separation of the signal and noise sub-spaces becomes more difficult to achieve. Conse-quently, with the aim of refining the responses attained by par-ametric techniques like MUSIC, this article suggests utilizing regularization as a post-processing step. Furthermore, as an alternative, this work also explores the possibility of selecting a single relatively large MO (rather than using MOS tools) and enhancing via regularization, the solutions retrieved by the treated parametric methods. In order to demonstrate the capabilities of this novel strategy, synthetic aperture radar (SAR) tomography (TomoSAR) is considered as application.
Item URL in elib: | https://elib.dlr.de/146298/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Resolution Enhancement of Spatial Parametric Methods via Regularization | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | November 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||||||
DOI: | 10.1109/JSTARS.2021.3120281 | ||||||||||||||||||||||||
Page Range: | pp. 11335-11351 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
Series Name: | IGARSS 2021 | ||||||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Index Terms—Information criteria, maximum likelihood (ML), model order selection (MOS), synthetic aperture radar (SAR) tomography (TomoSAR), regularization. | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Aircraft SAR | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute > SAR Technology | ||||||||||||||||||||||||
Deposited By: | Martin del Campo Becerra, Gustavo | ||||||||||||||||||||||||
Deposited On: | 29 Nov 2021 08:26 | ||||||||||||||||||||||||
Last Modified: | 29 Mar 2023 00:00 |
Repository Staff Only: item control page