elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Resolution Enhancement of Spatial Parametric Methods via Regularization

Martin del Campo Becerra, Gustavo und Serafín García, Sergio Alejandro und Reigber, Andreas und Ortega Cisneros, Susana und Nannini, Matteo (2021) Resolution Enhancement of Spatial Parametric Methods via Regularization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, Seiten 11335-11351. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3120281. ISSN 1939-1404.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
16MB

Offizielle URL: https://ieeexplore.ieee.org/document/9573368?source=authoralert

Kurzfassung

Abstract—The spatial spectral estimation problem has applications in a variety of fields, including radar, telecommunications, and biomedical engineering. Among the different ap-proaches for estimating the spatial spectral pattern, there are several parametric methods, as the well-known multiple signal classification (MUSIC). Parametric methods like MUSIC are reduced to the problem of selecting an integer-valued parameter [so-called model order (MO)], which describes the number of signals impinging on the sensors array. Commonly, the best MO corresponds to the actual number of targets, nonetheless, relatively large model orders also retrieve good-fitted responses when the data generating mechanism is more complex than the models used to fit it. Most commonly employed MO selection (MOS) tools are based on information theoretic criteria [e.g., Akaike information criterion (AIC), minimum description length (MDL) and efficient detection criterion (EDC)]. Normally, the implementation of these tools involves the eigenvalues decomposition of the data covariance matrix. A major drawback of such parametric methods (together with certain MOS tool) is the drastic accuracy decrease in adverse scenarios, particularly, with low signal-to-noise ratio, since the separation of the signal and noise sub-spaces becomes more difficult to achieve. Conse-quently, with the aim of refining the responses attained by par-ametric techniques like MUSIC, this article suggests utilizing regularization as a post-processing step. Furthermore, as an alternative, this work also explores the possibility of selecting a single relatively large MO (rather than using MOS tools) and enhancing via regularization, the solutions retrieved by the treated parametric methods. In order to demonstrate the capabilities of this novel strategy, synthetic aperture radar (SAR) tomography (TomoSAR) is considered as application.

elib-URL des Eintrags:https://elib.dlr.de/146298/
Dokumentart:Zeitschriftenbeitrag
Titel:Resolution Enhancement of Spatial Parametric Methods via Regularization
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Martin del Campo Becerra, GustavoGustavo.MartindelCampoBecerra (at) dlr.dehttps://orcid.org/0000-0003-1642-6068NICHT SPEZIFIZIERT
Serafín García, Sergio AlejandroSergio.SerafinGarcia (at) dlr.dehttps://orcid.org/0000-0003-2986-3793NICHT SPEZIFIZIERT
Reigber, AndreasAndreas.Reigber (at) dlr.dehttps://orcid.org/0000-0002-2118-5046NICHT SPEZIFIZIERT
Ortega Cisneros, Susanasortega (at) gdl.cinvestav.mxNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Nannini, MatteoMatteo.Nannini (at) dlr.dehttps://orcid.org/0000-0003-3523-9639NICHT SPEZIFIZIERT
Datum:November 2021
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.1109/JSTARS.2021.3120281
Seitenbereich:Seiten 11335-11351
Verlag:IEEE - Institute of Electrical and Electronics Engineers
Name der Reihe:IGARSS 2021
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Index Terms—Information criteria, maximum likelihood (ML), model order selection (MOS), synthetic aperture radar (SAR) tomography (TomoSAR), regularization.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Flugzeug-SAR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Martin del Campo Becerra, Gustavo
Hinterlegt am:29 Nov 2021 08:26
Letzte Änderung:29 Mär 2023 00:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.