Martin del Campo Becerra, Gustavo und Serafín García, Sergio Alejandro und Reigber, Andreas und Ortega Cisneros, Susana und Nannini, Matteo (2021) Resolution Enhancement of Spatial Parametric Methods via Regularization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, Seiten 11335-11351. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3120281. ISSN 1939-1404.
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
16MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9573368?source=authoralert
Kurzfassung
Abstract—The spatial spectral estimation problem has applications in a variety of fields, including radar, telecommunications, and biomedical engineering. Among the different ap-proaches for estimating the spatial spectral pattern, there are several parametric methods, as the well-known multiple signal classification (MUSIC). Parametric methods like MUSIC are reduced to the problem of selecting an integer-valued parameter [so-called model order (MO)], which describes the number of signals impinging on the sensors array. Commonly, the best MO corresponds to the actual number of targets, nonetheless, relatively large model orders also retrieve good-fitted responses when the data generating mechanism is more complex than the models used to fit it. Most commonly employed MO selection (MOS) tools are based on information theoretic criteria [e.g., Akaike information criterion (AIC), minimum description length (MDL) and efficient detection criterion (EDC)]. Normally, the implementation of these tools involves the eigenvalues decomposition of the data covariance matrix. A major drawback of such parametric methods (together with certain MOS tool) is the drastic accuracy decrease in adverse scenarios, particularly, with low signal-to-noise ratio, since the separation of the signal and noise sub-spaces becomes more difficult to achieve. Conse-quently, with the aim of refining the responses attained by par-ametric techniques like MUSIC, this article suggests utilizing regularization as a post-processing step. Furthermore, as an alternative, this work also explores the possibility of selecting a single relatively large MO (rather than using MOS tools) and enhancing via regularization, the solutions retrieved by the treated parametric methods. In order to demonstrate the capabilities of this novel strategy, synthetic aperture radar (SAR) tomography (TomoSAR) is considered as application.
elib-URL des Eintrags: | https://elib.dlr.de/146298/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Resolution Enhancement of Spatial Parametric Methods via Regularization | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | November 2021 | ||||||||||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 14 | ||||||||||||||||||||||||
DOI: | 10.1109/JSTARS.2021.3120281 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 11335-11351 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
Name der Reihe: | IGARSS 2021 | ||||||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Index Terms—Information criteria, maximum likelihood (ML), model order selection (MOS), synthetic aperture radar (SAR) tomography (TomoSAR), regularization. | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Flugzeug-SAR | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||||||||||
Hinterlegt von: | Martin del Campo Becerra, Gustavo | ||||||||||||||||||||||||
Hinterlegt am: | 29 Nov 2021 08:26 | ||||||||||||||||||||||||
Letzte Änderung: | 29 Mär 2023 00:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags