Gerhardus, Andreas (2021) Learning cause-and-effect relationships from time series data. KITP Program: Machine Learning and the Physics of Climate, 2021-11-01 - 2021-12-17, Santa Barbara, USA. doi: 10.26081/K6SP99.
PDF
10MB |
Offizielle URL: https://online.kitp.ucsb.edu/online/climate21/
Kurzfassung
In the first part of this talk we will give a brief introduction into the modern causal inference framework for reasoning about cause-and-effect relationships from observational data. The focus will be on the causal discovery problem, i.e., data-driven learning of qualitative causal relationships. In the second part we will introduce two recently developed algorithms for causal discovery in time series. The first of these, LPCMCI, extends the applicability of previous algorithms by specifically allowing for unobserved confounders. The second, Ensemble-PCMCI, performs causal discovery on ensembles of time series and thus allows to relax the usually made assumption of stationarity.
elib-URL des Eintrags: | https://elib.dlr.de/146280/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | Learning cause-and-effect relationships from time series data | ||||||||
Autoren: |
| ||||||||
Datum: | November 2021 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
DOI: | 10.26081/K6SP99 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | causal inference, causal discovery, causality, time series, hidden variables, non-stationarity | ||||||||
Veranstaltungstitel: | KITP Program: Machine Learning and the Physics of Climate | ||||||||
Veranstaltungsort: | Santa Barbara, USA | ||||||||
Veranstaltungsart: | Workshop | ||||||||
Veranstaltungsbeginn: | 1 November 2021 | ||||||||
Veranstaltungsende: | 17 Dezember 2021 | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Climate Informatics | ||||||||
Standort: | Jena | ||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||
Hinterlegt von: | Gerhardus, Andreas | ||||||||
Hinterlegt am: | 30 Nov 2021 12:07 | ||||||||
Letzte Änderung: | 22 Jul 2024 13:19 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags