Yuan, Zhenghang und Mou, LiChao und Zhu, Xiao Xiang (2021) Self-Paced Curriculum Learning for Visual Question Answering on Remote Sensing Data. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 2999-3002. IEEE. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9553624.
PDF
583kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9553624
Kurzfassung
Answering questions with natural language by extracting in-formation from image has great potential in various applica-tions. Although visual question answering (VQA) for naturalimage has been broadly studied, VQA for remote sensing datais still in the early research stage. For the same remote sens-ing image, there exist questions with dramatically differentdifficulty-levels. Treating these questions equally may mis-lead the model and limit the VQA model performance. Con-sidering this problem, in this work, we propose a self-pacedcurriculum learning (SPCL) based VQA model with hard andsoft weighting strategies for remote sensing data. Like humanlearning process, the model is trained from easy to hard ques-tion samples gradually. Extensive experimental results on twodatasets demonstrate that the proposed training method canachieve promising performance.
elib-URL des Eintrags: | https://elib.dlr.de/146238/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Self-Paced Curriculum Learning for Visual Question Answering on Remote Sensing Data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9553624 | ||||||||||||||||
Seitenbereich: | Seiten 2999-3002 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | visual question answering (VQA), self-paced curriculum learning (SPCL), remote sensing, deep learning | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||
Veranstaltungsort: | Brussels, Belgium | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 12 Juli 2021 | ||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Hua, Yuansheng | ||||||||||||||||
Hinterlegt am: | 29 Nov 2021 08:41 | ||||||||||||||||
Letzte Änderung: | 07 Jun 2024 09:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags