elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Developing and Testing a Deep Learning Approach for Mapping Retrogressive Thaw Slumps

Nitze, Ingmar und Heidler, Konrad und Barth, Sophia und Grosse, Guido (2021) Developing and Testing a Deep Learning Approach for Mapping Retrogressive Thaw Slumps. Remote Sensing, 13 (21), 4294_1-4294_23. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs13214294. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
23MB

Offizielle URL: https://www.mdpi.com/2072-4292/13/21/4294/htm

Kurzfassung

In a warming Arctic, permafrost-related disturbances, such as retrogressive thaw slumps (RTS), are becoming more abundant and dynamic, with serious implications for permafrost stability and bio-geochemical cycles on local to regional scales. Despite recent advances in the field of earth observation, many of these have remained undetected as RTS are highly dynamic, small, and scattered across the remote permafrost region. Here, we assessed the potential strengths and limitations of using deep learning for the automatic segmentation of RTS using PlanetScope satellite imagery, ArcticDEM and auxiliary datasets. We analyzed the transferability and potential for pan-Arctic upscaling and regional cross-validation, with independent training and validation regions, in six different thaw slump-affected regions in Canada and Russia. We further tested state-of-the-art model architectures (UNet, UNet++, DeepLabv3) and encoder networks to find optimal model configurations for potential upscaling to continental scales. The best deep learning models achieved mixed results from good to very good agreement in four of the six regions (maxIoU: 0.39 to 0.58; Lena River, Horton Delta, Herschel Island, Kolguev Island), while they failed in two regions (Banks Island, Tuktoyaktuk). Of the tested architectures, UNet++ performed the best. The large variance in regional performance highlights the requirement for a sufficient quantity, quality and spatial variability in the training data used for segmenting RTS across diverse permafrost landscapes, in varying environmental conditions. With our highly automated and configurable workflow, we see great potential for the transfer to active RTS clusters (e.g., Peel Plateau) and upscaling to much larger regions. View Full-Text

elib-URL des Eintrags:https://elib.dlr.de/146213/
Dokumentart:Zeitschriftenbeitrag
Titel:Developing and Testing a Deep Learning Approach for Mapping Retrogressive Thaw Slumps
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Nitze, Ingmaringmar.nitze (at) awi.dehttps://orcid.org/0000-0002-1165-6852NICHT SPEZIFIZIERT
Heidler, KonradKonrad.Heidler (at) dlr.dehttps://orcid.org/0000-0001-8226-0727NICHT SPEZIFIZIERT
Barth, Sophiasophia.barth (at) awi.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Grosse, Guidoguido.grosse (at) awi.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:26 Oktober 2021
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:13
DOI:10.3390/rs13214294
Seitenbereich:4294_1-4294_23
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:deep learning; image segmentation; permafrost thaw; semantic segmentation; disturbances; computer vision; automation; PlanetScope; thermo-erosion; ArcticDEM; landslides
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Heidler, Konrad
Hinterlegt am:26 Nov 2021 09:30
Letzte Änderung:30 Nov 2021 18:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.