elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification

Mou, LiChao und Saha, Sudipan und Hua, Yuansheng und Bovolo, Francesca und Bruzzone, Lorenzo und Zhu, Xiao Xiang (2022) Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 5504414. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3067096. ISSN 0196-2892.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
9MB

Offizielle URL: https://ieeexplore.ieee.org/document/9387453

Kurzfassung

Band selection refers to the process of choosing the most relevant bands in a hyperspectral image. By selecting a limited number of optimal bands, we aim at speeding up model training, improving accuracy, or both. It reduces redundancy among spectral bands while trying to preserve the original information of the image. By now, many efforts have been made to develop unsupervised band selection approaches, of which the majorities are heuristic algorithms devised by trial and error. In this article, we are interested in training an intelligent agent that, given a hyperspectral image, is capable of automatically learning policy to select an optimal band subset without anyhand-engineered reasoning. To this end, we frame the problem of unsupervised band selection as a Markov decision process, propose an effective method to parameterize it, and finally solve the problem by deep reinforcement learning. Once the agent is trained, it learns a band-selection policy that guides the agent to sequentially select bands by fully exploiting the hyperspectral image and previously picked bands. Furthermore, we propose two different reward schemes for the environment simulation of deep reinforcement learning and compare them in experiments. This, to the best of our knowledge, is the first study that explores a deep reinforcement learning model for hyperspectral image analysis, thus opening a new door for future research and showcasing the great potential of deep reinforcement learning in remote sensing applications. Extensive experiments are carried out on four hyperspectral data sets, and experimental results demonstrate the effectiveness of the proposed method. The code is publicly available.

elib-URL des Eintrags:https://elib.dlr.de/146194/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mou, LiChaoLiChao.Mou (at) dlr.dehttps://orcid.org/0000-0001-8407-6413NICHT SPEZIFIZIERT
Saha, Sudipansudipan.saha (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hua, YuanshengYuansheng.Hua (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bovolo, Francescabovolo (at) fbk.euhttps://orcid.org/0000-0003-3104-7656NICHT SPEZIFIZIERT
Bruzzone, Lorenzolorenzo.bruzzone (at) unitn.ithttps://orcid.org/0000-0002-6036-459XNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.dehttps://orcid.org/0000-0001-5530-3613NICHT SPEZIFIZIERT
Datum:2022
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:60
DOI:10.1109/TGRS.2021.3067096
Seitenbereich:Seite 5504414
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Hyperspectral imaging, Task analysis, Reinforcement learning, Markov processes, Earth, Correlation, Feature extraction
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Rösel, Dr. Anja
Hinterlegt am:26 Nov 2021 09:23
Letzte Änderung:24 Mai 2022 23:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.