elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Tracing the aqueous alteration history between Isidis and Hellas Planitiae on Mars

Tirsch, Daniela and Bishop, J. L. and Voigt, Joana R.C. and Tornabene, Livio L. and Viviano, C. and Lane, M.D. and Loizeau, Damien and Sacks, L. (2021) Tracing the aqueous alteration history between Isidis and Hellas Planitiae on Mars. The Geological Society of America (GSA). GSA Connects 2021, 10.-13. Oct. 2021, hybrid; Portland, Oregon, USA. doi: 10.1130/abs/2021AM-365395.

Full text not available from this repository.

Official URL: https://gsa.confex.com/gsa/2021AM/meetingapp.cgi/Paper/365395

Abstract

We initiated our study of the morphology and mineralogy of aqueous outcrops at Libya Montes (LM) at the southern rim of the Isidis impact basin. The Noachian to Amazonian aged rocks there result from a complex history of impact, volcanic, tectonic, fluvial, and aeolian processes. Our work involved coordinated studies using HRSC, CRISM, HiRISE, and CTX data that resulted in extensive base mapping, age dating, detailed spectro-morphological mapping of a focused region at LM, spectral analyses of various mineral outcrops, and 3D topographic analyses using combinations of HRSC DTMs and CRISM data. We observed a diversity of mineral assemblages, suggesting that the nature of aqueous alteration at LM varied in space and time. This mineralogy, together with geologic features, indicates a transition from Noachian impact-induced hydrothermal alteration through Hesperian evaporative processes to Amazonian resurfacing. More recently, we extended our investigations southward to include wide areas of Tyrrhena Terra (TT) toward the rim of the Hellas Basin. The entire TT region hosts a fascinating diversity of aqueously altered materials accompanied by unaltered mafic rocks. It is cut by fluvial channels, is overprinted by numerous impact craters, and includes various lobate and fan-shaped deposits. Similar to LM, the combinations of these different landforms provide evidence of a variable history of erosion and deposition. Current work is defining the effects of aqueous processes and impacts on mineral alteration and weathering. Again, we began with extensive geomorphological mapping of the entire TT region and age dating of selected units based on HRSC and CTX data. This geomorphological map was then coordinated with a map of aqueous minerals derived from the analysis of CRISM multispectral imagery together with focused CRISM hyperspectral analyses at selected sites to assess whether or not there are spatial trends in the relationships between specific geomorphological units and mineral occurrences throughout TT. We found clear correlations between certain mineral types and their proximity to one of the major impact basins. In particular, the Hellas impact event appears to have produced more variable temperatures and water chemistries, leading to increased mineral variability near its rim.

Item URL in elib:https://elib.dlr.de/146118/
Document Type:Conference or Workshop Item (Speech)
Title:Tracing the aqueous alteration history between Isidis and Hellas Planitiae on Mars
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
Tirsch, DanielaDaniela.Tirsch (at) dlr.dehttps://orcid.org/0000-0001-5905-5426
Bishop, J. L.SETI Institute, Carl-Sagan-Centerhttps://orcid.org/0000-0002-6681-9954
Voigt, Joana R.C.Lunar and Planetary Laboratory, University of Arizona, AZ, USAhttps://orcid.org/0000-0002-4834-2021
Tornabene, Livio L.University of Western Ontario, London, ON, CanadaUNSPECIFIED
Viviano, C.Johns Hopkins University Applied Physics Lab (JHUAPL)UNSPECIFIED
Lane, M.D.Fibernetics LLCUNSPECIFIED
Loizeau, DamienInstitut d’Astrophysique Spatiale, Universite Paris-Sud, Orsay, FranceUNSPECIFIED
Sacks, L.Dept. of Earth Sciences, Institute for Earth and Space Exploration, University of Western Ontario,UNSPECIFIED
Date:2021
Refereed publication:No
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Volume:53
DOI :10.1130/abs/2021AM-365395
Page Range:p. 365395
Publisher:The Geological Society of America (GSA)
Series Name:Geological Society of America Abstracts with Programs
Status:Published
Keywords:Mars, spectroscopy, geologic mapping, HRSC, CRISM
Event Title:GSA Connects 2021
Event Location:hybrid; Portland, Oregon, USA
Event Type:international Conference
Event Dates:10.-13. Oct. 2021
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space Exploration
DLR - Research area:Raumfahrt
DLR - Program:R EW - Space Exploration
DLR - Research theme (Project):R - Project Mars Express HRSC
Location: Berlin-Adlershof
Institutes and Institutions:Institute of Planetary Research > Planetary Geology
Deposited By: Tirsch, Daniela
Deposited On:24 Nov 2021 13:12
Last Modified:24 Nov 2021 13:12

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.