Nouman, Ahmed und Saha, Sudipan und Shahzad, Muhammad und Moazam Fraz, Muhammad und Zhu, Xiao Xiang (2021) Progressive Unsupervised Deep Transfer Learning for Forest Mapping in Satellite Image. In: 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021, Seiten 752-761. International Conference on Computer Vision (ICCV), 2021-10-11 - 2021-10-17, Virtuell. doi: 10.1109/ICCVW54120.2021.00089. ISBN 978-166540191-3. ISSN 1550-5499.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9607401
Kurzfassung
Automated forest mapping is important to understand our forests that play a key role in ecological system. However, efforts towards forest mapping is impeded by difficulty to collect labeled forest images that show large intraclass variation. Recently unsupervised learning has shown promising capability when exploiting limited labeled data. Motivated by this, we propose a progressive unsupervised deep transfer learning method for forest mapping. The proposed method exploits a pre-trained model that is subsequently fine-tuned over the target forest domain. We propose two different fine-tuning echanism, one works in a totally unsupervised setting by jointly learning the parameters of CNN and the k-means based cluster assignments of the resulting features and the other one works in a semi-supervised setting by exploiting the extracted k-nearest neighbor based pseudo labels. The proposed progressive scheme is evaluated on publicly available EuroSAT dataset using the relevant base model trained on BigEarth-Net labels. The results show that the proposed method greatly improves the forest regions classification accuracy as compared to the unsupervised baseline, nearly approaching the supervised classification approach.
elib-URL des Eintrags: | https://elib.dlr.de/145759/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Progressive Unsupervised Deep Transfer Learning for Forest Mapping in Satellite Image | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2021 | ||||||||||||||||||||||||
Erschienen in: | 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/ICCVW54120.2021.00089 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 752-761 | ||||||||||||||||||||||||
ISSN: | 1550-5499 | ||||||||||||||||||||||||
ISBN: | 978-166540191-3 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Unsupervised Learning, Deep Learning, Forest Monitoring, AI4EO, Earth Observation, Transfer Learning | ||||||||||||||||||||||||
Veranstaltungstitel: | International Conference on Computer Vision (ICCV) | ||||||||||||||||||||||||
Veranstaltungsort: | Virtuell | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 11 Oktober 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 17 Oktober 2021 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Rösel, Dr. Anja | ||||||||||||||||||||||||
Hinterlegt am: | 19 Nov 2021 09:43 | ||||||||||||||||||||||||
Letzte Änderung: | 05 Jun 2024 12:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags