Saha, Sudipan und Ebel, Patrick und Zhu, Xiao Xiang (2022) Self-Supervised Multisensor Change Detection. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 4405710. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3109957. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9538396
Kurzfassung
Most change detection (CD) methods assume that prechange and postchange images are acquired by the same sensor. However, in many real-life scenarios, e.g., natural disasters, it is more practical to use the latest available images before and after the occurrence of incidence, which may be acquired using different sensors. In particular, we are interested in the combination of the images acquired by optical and synthetic aperture radar (SAR) sensors. SAR images appear vastly different from the optical images even when capturing the same scene. Adding to this, CD methods are often constrained to use only target image-pair, no labeled data, and no additional unlabeled data. Such constraints limit the scope of traditional supervised machine learning and unsupervised generative approaches for multisensor CD. The recent rapid development of self-supervised learning methods has shown that some of them can even work with only few images. Motivated by this, in this work, we propose a method for multisensor CD using only the unlabeled target bitemporal images that are used for training a network in a self-supervised fashion by using deep clustering and contrastive learning. The proposed method is evaluated on four multimodal bitemporal scenes showing change, and the benefits of our self-supervised approach are demonstrated. Code is available at https://gitlab.lrz.de/ai4eo/cd/-/tree/main/sarOpticalMultisensorTgrs2021.
elib-URL des Eintrags: | https://elib.dlr.de/145752/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Self-Supervised Multisensor Change Detection | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 60 | ||||||||||||||||
DOI: | 10.1109/TGRS.2021.3109957 | ||||||||||||||||
Seitenbereich: | Seite 4405710 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Optical sensors, Optical imaging, Training, Earth, Synthetic aperture radar, Deep learning, Spatial resolution | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Rösel, Dr. Anja | ||||||||||||||||
Hinterlegt am: | 18 Nov 2021 13:15 | ||||||||||||||||
Letzte Änderung: | 19 Okt 2023 14:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags