Ma, Lei und Zhu, Xiao Xiang und Qiu, Chunping und Blaschke, Thomas und Li, Manchun (2021) Advances of Local Climate Zone Mapping and Its Practice Using Object-Based Image Analysis. Atmosphere, 12 (9), Seiten 1-15. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/atmos12091146. ISSN 2073-4433.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.mdpi.com/2073-4433/12/9/1146
Kurzfassung
In the context of climate change and urban heat islands, the concept of local climate zones (LCZ) aims for consistent and comparable mapping of urban surface structure and cover across cities. This study provides a timely survey of remote sensing-based applications of LCZ mapping considering the recent increase in publications. We analyze and evaluate several aspects that affect the performance of LCZ mapping, including mapping units/scale, transferability, sample dataset, low accuracy, and classification schemes. Since current LCZ analysis and mapping are based on per-pixel approaches, this study implements an object-based image analysis (OBIA) method and tests it for two cities in Germany using Sentinel 2 data. A comparison with a per-pixel method yields promising results. This study shall serve as a blueprint for future object-based remotely sensed LCZ mapping approaches.
elib-URL des Eintrags: | https://elib.dlr.de/145744/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Advances of Local Climate Zone Mapping and Its Practice Using Object-Based Image Analysis | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 6 September 2021 | ||||||||||||||||||||||||
Erschienen in: | Atmosphere | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 12 | ||||||||||||||||||||||||
DOI: | 10.3390/atmos12091146 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-15 | ||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 2073-4433 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | local climate zones; remote sensing; mapping unit; transferability; object-based image analysis | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Rösel, Dr. Anja | ||||||||||||||||||||||||
Hinterlegt am: | 18 Nov 2021 11:09 | ||||||||||||||||||||||||
Letzte Änderung: | 05 Dez 2023 09:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags