Wang, Minghui und Li, Qingpeng und Gu, Yunchao und Fang, Leyuan und Zhu, Xiao Xiang (2022) SCAF-Net: Scene Context Attention-Based Fusion Network for Vehicle Detection in Aerial Imagery. IEEE Geoscience and Remote Sensing Letters, 19, Seite 3508305. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2021.3107281. ISSN 1545-598X.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
10MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9530866
Kurzfassung
In recent years, deep learning methods have achieved great success for vehicle detection tasks in aerial imagery. However, most existing methods focus only on extracting latent vehicle target features, and rarely consider the scene context as vital prior knowledge. In this letter, we propose a scene context attention-based fusion network (SCAF-Net), to fuse the scene context of vehicles into an end-to-end vehicle detection network. First, we propose a novel strategy, patch cover, to keep the original target and scene context information in raw aerial images of a large scale as much as possible. Next, we use an improved YOLO-v3 network as one branch of SCAF-Net, to generate vehicle candidates on each patch. Here, a novel branch for the scene context is utilized to extract the latent scene context of vehicles on each patch without any extra annotations. Then, these two branches above are concatenated together as a fusion network, and we apply an attention-based model to further extract vehicle candidates of each local scene. Finally, all vehicle candidates of different patches, are merged by global nonmax suppress (g-NMS) to output the detection result of the whole original image. Experimental results demonstrate that our proposed method outperforms the comparison methods with both high detection accuracy and speed. Our code is released at https://github.com/minghuicode/SCAF-Net.
elib-URL des Eintrags: | https://elib.dlr.de/145686/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | SCAF-Net: Scene Context Attention-Based Fusion Network for Vehicle Detection in Aerial Imagery | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 19 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2021.3107281 | ||||||||||||||||||||||||
Seitenbereich: | Seite 3508305 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Attention-based model, deep learning, fusionnetwork, remote sensing, vehicle detection | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Rösel, Dr. Anja | ||||||||||||||||||||||||
Hinterlegt am: | 17 Nov 2021 14:42 | ||||||||||||||||||||||||
Letzte Änderung: | 01 Feb 2023 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags