elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

SCAF-Net: Scene Context Attention-Based Fusion Network for Vehicle Detection in Aerial Imagery

Wang, Minghui und Li, Qingpeng und Gu, Yunchao und Fang, Leyuan und Zhu, Xiao Xiang (2022) SCAF-Net: Scene Context Attention-Based Fusion Network for Vehicle Detection in Aerial Imagery. IEEE Geoscience and Remote Sensing Letters, 19, Seite 3508305. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2021.3107281. ISSN 1545-598X.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
10MB

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9530866

Kurzfassung

In recent years, deep learning methods have achieved great success for vehicle detection tasks in aerial imagery. However, most existing methods focus only on extracting latent vehicle target features, and rarely consider the scene context as vital prior knowledge. In this letter, we propose a scene context attention-based fusion network (SCAF-Net), to fuse the scene context of vehicles into an end-to-end vehicle detection network. First, we propose a novel strategy, patch cover, to keep the original target and scene context information in raw aerial images of a large scale as much as possible. Next, we use an improved YOLO-v3 network as one branch of SCAF-Net, to generate vehicle candidates on each patch. Here, a novel branch for the scene context is utilized to extract the latent scene context of vehicles on each patch without any extra annotations. Then, these two branches above are concatenated together as a fusion network, and we apply an attention-based model to further extract vehicle candidates of each local scene. Finally, all vehicle candidates of different patches, are merged by global nonmax suppress (g-NMS) to output the detection result of the whole original image. Experimental results demonstrate that our proposed method outperforms the comparison methods with both high detection accuracy and speed. Our code is released at https://github.com/minghuicode/SCAF-Net.

elib-URL des Eintrags:https://elib.dlr.de/145686/
Dokumentart:Zeitschriftenbeitrag
Titel:SCAF-Net: Scene Context Attention-Based Fusion Network for Vehicle Detection in Aerial Imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wang, MinghuiState Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Li, QingpengState Laboratory of Robot Visual Perception and Control Technology, School of Robotics, Hunan Universityhttps://orcid.org/0000-0002-7401-0928NICHT SPEZIFIZIERT
Gu, YunchaoState Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fang, LeyuanState Laboratory of Robot Visual Perception and Control Technology, School of Robotics, Hunan Universityhttps://orcid.org/0000-0003-2351-4461NICHT SPEZIFIZIERT
Zhu, Xiao XiangGerman Aerospace Center, Remote Sensing Technology Institutehttps://orcid.org/0000-0001-5530-3613NICHT SPEZIFIZIERT
Datum:2022
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:19
DOI:10.1109/LGRS.2021.3107281
Seitenbereich:Seite 3508305
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:Attention-based model, deep learning, fusionnetwork, remote sensing, vehicle detection
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Rösel, Dr. Anja
Hinterlegt am:17 Nov 2021 14:42
Letzte Änderung:01 Feb 2023 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.