Reimers, Christian und Penzel, Niklas und Bodesheim, Paul und Runge, Jakob und Denzler, Joachim (2021) Conditional dependence tests reveal the usage of ABCD rule features and bias variables in automatic skin lesion classification. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021. Sixth ISIC Skin Image Analysis Workshop @ CVPR 2021 Virtual, 2021-06-19, Online. doi: 10.1109/CVPRW53098.2021.00200. ISSN 2160-7508.
PDF
- Nur DLR-intern zugänglich
178kB |
Kurzfassung
Skin cancer is the most common form of cancer, and melanoma is the leading cause of cancer related deaths. To improve the chances of survival, early detection of melanoma is crucial. Automated systems for classifying skin lesions can assist with initial analysis. However, if we expect people to entrust their well-being to an automatic classification algorithm, it is important to ensure that the algorithm makes medically sound decisions. We investigate this question by testing whether two state-of-the-art models use the features defined in the dermoscopic ABCD rule or whether they rely on biases. We use a method that frames supervised learning as a structural causal model, thus reducing the question whether a feature is used to a conditional dependence test. We show that this conditional dependence method yields meaningful results on data from the ISIC archive. Furthermore, we find that the selected models incorporate asymmetry, border and dermoscopic structures in their decisions but not color. Finally, we show that the same classifiers also use bias features such as the patient's age, skin color or the existence of colorful patches.
elib-URL des Eintrags: | https://elib.dlr.de/145608/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Conditional dependence tests reveal the usage of ABCD rule features and bias variables in automatic skin lesion classification | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 19 Juni 2021 | ||||||||||||||||||||||||
Erschienen in: | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1109/CVPRW53098.2021.00200 | ||||||||||||||||||||||||
ISSN: | 2160-7508 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Explaining AI, Causality, Conditional dependence tests, Automatic skin lesion classification | ||||||||||||||||||||||||
Veranstaltungstitel: | Sixth ISIC Skin Image Analysis Workshop @ CVPR 2021 Virtual | ||||||||||||||||||||||||
Veranstaltungsort: | Online | ||||||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||||||
Veranstaltungsdatum: | 19 Juni 2021 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||||||||||||||||||
Hinterlegt von: | Käding, Christoph | ||||||||||||||||||||||||
Hinterlegt am: | 18 Nov 2021 15:58 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags