Jaurigue, Lina und Robertson, Elizabeth und Wolters, Janik und Ludge, Kathy (2021) Reservoir Computing with Delayed Input for Fast and Easy Optimization. [sonstige Veröffentlichung] (eingereichter Beitrag)
Es ist eine neuere Version dieses Eintrags verfügbar. |
PDF
2MB |
Kurzfassung
Reservoir computing is a machine learning method that uses the response of a dynamical system to a certain input in order to solve a task. As the training scheme only involves optimising the weights of the responses of the dynamical system, this method is particularly suited for hardware implementation. Furthermore, the inherent memory of dynamical systems which are suitable for use as reservoirs mean that this method has the potential to perform well on time series prediction tasks, as well as other tasks with time dependence. However, reservoir computing still requires extensive task dependent parameter optimisation in order to achieve good performance. We demonstrate that by including a time-delayed version of the input for various time series prediction tasks, good performance can be achieved with an unoptimised reservoir. Furthermore, we show that by including the appropriate time-delayed input, one unaltered reservoir can perform well on six different time series prediction tasks at a very low computational expense. Our approach is of particular relevance to hardware implemented reservoirs, as one does not necessarily have access to pertinent optimisation parameters in physical systems but the inclusion of an additional input is generally possible.
elib-URL des Eintrags: | https://elib.dlr.de/145379/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | sonstige Veröffentlichung | ||||||||||||||||||||
Titel: | Reservoir Computing with Delayed Input for Fast and Easy Optimization | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2021 | ||||||||||||||||||||
Erschienen in: | www.preprints.org | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
DOI: | 10.20944/preprints202111.0030.v1 | ||||||||||||||||||||
Status: | eingereichter Beitrag | ||||||||||||||||||||
Stichwörter: | Reservoir Computer, Machine learning | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Detektoren für optische Instrumente | ||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Optische Sensorsysteme > Terahertz- und Laserspektroskopie | ||||||||||||||||||||
Hinterlegt von: | Wolters, Janik | ||||||||||||||||||||
Hinterlegt am: | 11 Nov 2021 13:49 | ||||||||||||||||||||
Letzte Änderung: | 11 Nov 2021 13:49 |
Verfügbare Versionen dieses Eintrags
- Reservoir Computing with Delayed Input for Fast and Easy Optimization. (deposited 11 Nov 2021 13:49) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags