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Abstract: Reservoir computing is a machine learning method that uses the response of a dynamical1

system to a certain input in order to solve a task. As the training scheme only involves optimising2

the weights of the responses of the dynamical system, this method is particularly suited for3

hardware implementation. Furthermore, the inherent memory of dynamical systems which are4

suitable for use as reservoirs mean that this method has the potential to perform well on time series5

prediction tasks, as well as other tasks with time dependence. However, reservoir computing still6

requires extensive task dependent parameter optimisation in order to achieve good performance.7

We demonstrate that by including a time-delayed version of the input for various time series8

prediction tasks, good performance can be achieved with an unoptimised reservoir. Furthermore,9

we show that by including the appropriate time-delayed input, one unaltered reservoir can10

perform well on six different time series prediction tasks at a very low computational expense.11

Our approach is of particular relevance to hardware implemented reservoirs, as one does not12

necessarily have access to pertinent optimisation parameters in physical systems but the inclusion13

of an additional input is generally possible.14

Keywords: reservoir computing; time series prediction; performance optimisation15

1. Introduction16

Reservoir computing (RC) is a machine learning method that is particularly suited17

to solving dynamical tasks [1]. It was introduced as a way of using recurrent networks18

for machine learning but circumventing the costly training of the network weights [2].19

The main principle underpinning reservoir computing is that the reservoir projects the20

inputs into a sufficiently high dimensional phase space such that it suffices to linearly21

sample the response of the reservoir in order to approximate the desired target for a given22

task. For this to work the reservoir must fulfil certain criteria; the response to sufficiently23

different inputs must be linearly separable, the reservoir must be capable of performing24

nonlinear transforms, and the reservoir must have the fading memory property [2].25

However, even when these criteria are fulfilled, the performance depends greatly on the26

dynamics of the reservoir. Hence, in the past two decades a lot of research in the reservoir27

computing community has focused on the optimisation of the reservoir parameters [3–9].28

Furthermore, the optimisation of the reservoir is a task specific problem [1,10–12] and a29

universal reservoir, which performs well on a range of tasks, remains elusive.30

In a recent paper [13], the authors aim to eliminate the issue of hyperparameter31

optimisation altogether by removing the reservoir. Their approach essentially takes the32

well known nonlinear vector autoregression (NVAR) method, uses a less parsimonious33

approach to filling the feature vector and adds Tikhonov regularisation. However,34

the method of [13] trades the optimisation of the reservoir hyperparameters for the35

optimisation of the feature vector elements and it can not be asserted that the latter is36

generally less costly. Furthermore, one of the main factors driving research into reservoir37
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computing forward is the possibility for hardware implementation [14–19], which is38

impractical when the reservoir is absent.39

In this contribution we demonstrate a new approach that reduces the need for hy-40

perparameter optimisation and is well suited to boosting the performance of physically41

implemented reservoir computers. Specifically, we show that, by adding a time delayed42

version of the input for a given task, the performance of an unoptimised reservoir can be43

greatly improved. We demonstrate this by using one unaltered reservoir to perform six44

different time series prediction tasks. In each case the only optimisation parameters are45

the delay and input strength of the additional delayed input. The aim of this work is46

not to achieve the best possible performance, but rather to demonstrate that reasonable47

performance can be achieved for various tasks using the same reservoir and at a very48

low computational cost.49

Using time delayed input is a common approach for adding memory to feedforward50

networks [20–23] and is the basis of statistical forecasting methods [21,24]. However,51

despite the simplicity of this idea, to the best of our knowledge time-delayed inputs52

have not been used to optimise the performance of reservoir computers. This may be53

because the focus has been on constructing reservoirs that have the necessary memory54

to perform a given task [1].55

Our results are of particular relevance to the hardware implementation of reservoir56

computing, because in physical systems one does not always have access to the relevant57

hyperparameters necessary for optimisation of the task dependent performance but it58

should always be possible to add an additional input.59

2. Methods60

In the following we describe the reservoir computing concept, the model for the61

reservoir, our proposed time-delayed input method and the benchmarking tasks that are62

used to test our approach.63

2.1. Reservoir computing64

Figure 1. (a) Sketch of the reservoir computing concept. (b) Sketch of the memory cell reservoir
described in Section 2.2.
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In reservoir computing the reservoir, which at this point can be treated as a black
box, is fed an input and the response of the system is sampled a number of times. The
responses are then linearly combined to approximate the desired output (see Fig.1 a).
The linear output weights are trained via linear regression, typically using Tikhonov
regularisation or regularisation by noise [1]. A variant of reservoir computing, that
is of particular relevance for hardware implementation, is time-multiplexed reservoir
computing using only one nonlinear element [25]. In this scheme both the injection of
the data into the reservoir, and the filling of state matrix S occur sequentially. Typically
a mask is applied to the input data in order to diversify the response of the reservoir
to the input. In the training phase, the reservoir is fed a sequence of training data of
length Ktr. A mask of length Nv is applied to each element of the training data, where
Nv corresponds to the readout dimension (i.e. the number virtual nodes). Hence, there
are NvKtr time-multiplexed inputs that are sequentially fed into the reservoir. The
corresponding state matrix, which has the dimensions Ktr × (Nv + 1), is filled row by
row with an additional bias term of 1 at the end of each row. The training step is then to
find the (Nv + 1) dimensional weight vector W that best approximates

ô ≈ S ·W, (1)

where ô is the vector of Ktr target outputs. The solution to this linear problem is given by

W =
(

STS + λI
)−1

STô, (2)

where λ is the Tikhonov regularisation parameter and I is the identity matrix.65

2.1.1. Error measure66

To quantify the performance of the reservoir computer we use the normalised root
mean squared error (NRMSE) defined as

NRMSE =

√
∑Ko

k=1(ôk − ok)
2

Kovar(ô)
, (3)

where ôk are the target values, ok are the outputs produced by the reservoir computer67

and Ko is the length of the vector ô.68

2.2. Reservoir Model69

To investigate the effect of delayed input on a physically implemented reservoir
computer, we model a physical system that is inspired by optical delay line reservoirs
[26,27]. Delay line implementations have shown promise due to high throughput speeds
[28]. However, complex network connectivity, achieved via the introduction of mul-
tiple delays, represents a significant experimental hurdle, or requires opto-electrical
conversion of the signal for electronic storage thereby forgoing the advantages of an all-
optical implementation. Recent developments in optical quantum memories with high
bandwidth [29] and high capacity [30] allow for the on-demand storage and retrieval of
optical pulses and thus the implementation of delays of arbitrary length, limited only by
the coherence time of the optical memory, which can reach up to one second [31]. The
reservoir model described below models a physical optical system including the optical
memory for the reconfigurable and arbitrary coupling of the injected information (mod-
eled as memory cells with input and output coupling), a non-linear element (modeled as
a semiconductor optical amplifier), and a short delay line; whose purpose is albeit not
for introducing delay, but to recouple existing information back into the optical system.
A sketch of the envisaged setup is shown in Fig. 1 b. Input is fed through a nonlinear
element and then stored in memory cells. Combinations of the memory cells are then
partially read out and coupled back into the nonlinear element. The map describing this
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process is given by the following. Let xn(k) be the state of the nth memory cell at time
step k. The next time step is then given by

xn(k + 1) = Kin
m
n G(Kxout(k) + J(k + 1)) + Knin

m
n (1−Kout

m
n )xn(k), (4)

m→ (m + 1)mod M,

where

xout(k) =
N

∑
n=1

Kout
m
n xn(k), (5)

G(x) is the function describing the nonlinear element, the matrices Kin, Knin and Kout
describe the coupling into and out of the memory cells, K is the percentage of the output
xout that is coupled back into the nonlinear element and J(k) is the input. The coupling
matrices have the dimensions MxN, where N is the number of memory cells and M is
the period with which the coupling sequence repeats. For each iteration one row of the
coupling matrices determines which memory cells are written into and which are read
out of. Kin gives the write sequence and Kout the out-coupling sequence. These two
matrices contain values from zero to one. For Kin the row sum must be one. The entries
of the matrix Knin are

Knin
m
n =

{
0 if Kin

m
n 6= 0

1 if Kin
m
n = 0

.

This allows the memory cells with new input to be overwritten and those without to be70

updated according to how much was read out.71

The model described above allows for arbitrary coupling between the memory cells.
For this study we choose Kin = Kout = I, i.e. M = N. For this choice of coupling Eqs.(4)
and (5) can be rewritten as

xout(k + 1) = G(Kxout(k− N + 1) + J(k + 1)). (6)

We then choose N = Nv + 1 where Nv is the number of virtual nodes that will be used72

for the reservoir computing tasks. This coupling describes a type of ring coupling akin73

to delay-based reservoir computers with the feedback delay equal to T + θ, where T74

is the clock time and θ is the virtual node separation [27,32]. We choose such a simple75

coupling scheme as it has been demonstrated that such coupling topologies perform76

similarly to random coupling topologies [4]. Using Eq. (6) the rows of the state matrix S77

are filled with Nv sequential xout(k) (Fig. 1).78

For the nonlinearity we choose

G(x) =
g0x

1 + x/Psat
, (7)

which describes the input response of a semiconductor optical amplifier [33,34].79

2.3. Input and mask80

The reservoir input is given by a task dependent time series and a time-delayed
version of this time series. Before the data is fed into the reservoir, masks are applied to
both input series. The masks consists of Nv values drawn from a uniform distribution
between 0 and 1. The final input is then given by

J(k) = G1 I
(
k′
)

M1
(
k′′
)
+ G2 I

(
k′ − d

)
M2
(
k′′
)
+ J0, (8)

where G1 and G2 are the input scaling factors, I(k′) is the input time series, d is the input81

delay, M1(k′′) and M2(k′′) are k′′th entries of the Nv dimensional masking vectors and82

J0 is a constant offset. A sketch of the masked input sequence is shown in Fig. 2.83

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2021                   



Version October 31, 2021 submitted to Journal Not Specified 5 of 12

Figure 2. Sketch of the generation of the final input sequence J(k) using the task dependent input
I(k′), a delayed version of this input I(k′ − d) and the masks M1(k′′) and M2(k′′), as described by
Eq. (8).

2.4. Time series prediction tasks84

2.4.1. Mackey-Glass85

The Mackey-Glass equation is a delay differential equation which exhibits chaotic
dynamics. The reservoir computing benchmarking task is to predict the timeseries s
number of steps ahead in the chaotic regime. The Mackey-Glass equation is [35]:

dx
dt

= β
x(t− τ)

1 + x(t− τ)n − γx. (9)

We use the standard parameters: τ = 17, n = 10, β = 0.2 and γ = 0.1. To create the86

input sequence I(k′) the time series generated by Eq. (9) is sampled with a time step of87

dt = 1. The corresponding target sequence is then given by I(k′ + s).88

2.4.2. NARMA1089

NARMA10 is a commonly used benchmarking task that is defined by the iterative
formula

An+1 = 0.3An + 0.05An

(
9

∑
i=0

An−i

)
+ 1.5un−9un + 0.1, (10)

where un are identically and independently drawn random numbers from a uniform90

distribution in the interval [0,0.5] [36]. The reservoir input sequence I(k′) is given by the91

sequence of un and the target sequence is given by the corresponding An.92

2.4.3. Lorenz93

The Lorenz system [37] is given by94

dx
dt

= c1y− c1x,
dy
dt

= x(c2 − z)− y, and
dz
dt

= xy− c3z. (11)

With c1 = 10, c2 = 28 and c3 = 8/3 this system exhibits chaotic dynamics. We use the95

x variable, sampled with a step size of dt = 0.02, as the input I(k′) for two time series96

prediction tasks. The first is one step ahead (s = 1) prediction of the x variable. The97

second is one step ahead (s = 1) cross prediction of the z variable.98
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2.5. Simulation conditions99

Table 1. Reservoir and input parameter values.

Parameter Value Parameter Value

g0 40 Psat 1
K 0.02 N 31
Nv 30 λ 5e-6

G1 (Mackey-Glass) 1 J0 (Mackey-Glass) 0
G1 (Lorenz) 0.03 J0 (Lorenz) 0.85

G1 (NARMA10) 1.8 J0 (NARMA10) 0.4

For all tasks the reservoir is initialised with an input sequence I(k′) of length 10000.100

The system is then trained on Ktr = 10000 inputs. This is followed by another buffer of101

10000 inputs, before the performance is tested on a sequence of Kte = 5000 inputs, unless102

stated otherwise. For each task the reservoir parameters are kept identical and are as103

given in Table 1. The input scaling of the primary input G1 (non-delayed input) and104

the offset J0 are scaled such that the input range for each task is approximately [0.4,1.3].105

The scaling of the delayed input G2 and the input delay d are used as the optimisation106

parameters. For each task the performance is averaged over 100 realisations of the107

random masks and in the case of NARMA10 also the random inputs.108

3. Results109

The performance of the reservoir with additional delayed input is tested on six110

tasks; we first consider Mackey-Glass time series prediction for one, three and ten steps111

into the future. The results of the Mackey-Glass tasks, and their relation to the delayed112

input parameters, are depicted in Fig.3 a-c. Corresponding scans of the delayed input113

strength G2 for the optimal input delay d, for each task, are shown in Fig.4 a-c. G2 = 0114

corresponds to the system without delayed input and should be used as the reference115

to quantify the performance boost due to the delayed input. For each of the three cases116

the delayed input leads to a reduction in the NRMSE, ranging from 20% for s = 1 to117

over a factor three for s = 10. The optimal values for the delay and the input scaling G2118

vary depending on the number of steps s predicted into the future. In agreement with119

the results presented in [38], larger input scaling is required as s increases, indicating120

that nonlinear transforms become increasingly important. In terms of the absolute121

performance, similar results are achieved compared with other studies [38,39], despite122

the number of virtual nodes used in this study being significantly lower.123

The results for the NARMA10 task are shown in Fig. 3d and Fig. 4d. Without the124

delayed input (G2 = 0) the performance of the reservoir is very poor. This is in contrast125

to the Mackey-Glass s = 1 for which the performance without delayed input (Fig. 3a126

with G2 = 0) is reasonable. Moreover, this finding supports the general observation that127

reservoir computers have to be optimised to individual tasks and perform poorly as128

universal approximators [1,10,11]. The inclusion of delayed input significantly reduced129

the NARMA10 error, reaching a NRMSE of about 0.3 for the input delay d = 9. In130

absolute terms a NRMSE of 0.3 is within the range of typically quoted best values131

(NRMSE=0.15-0.4) [4,10,40–43], however usually achieved with a much higher output132

dimension than the Nv = 30 used here. The performance achieved in this study came133

at a very low computational cost. As a comparison, in [43] the authors investigate the134

influence of combining echo state networks with different timescales and achieve a best135

performance of just under 0.4 for the NRMSE, at a greater computational expense.136

The remaining two tasks are one step ahead Lorenz x prediction and one step head137

Lorenz z cross prediction, the results of which are shown in Fig. 3e-f and Fig. 4e-f. In both138

cases there is an improvement in the performance with the correct choice of the delayed139

input. It is has been demonstrated that the Lorenz x one step ahead prediction requires140

only the very recent history of the x-variable time series [13], and we find the optimal141
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Figure 3. NRMSE as a function of the delayed input parameters d and G2 for Mackey-Glass (a) one,
(b) three and (c) ten step ahead prediction, (d) NARMA10, (c) Lorenz x one step ahead prediction
and (f) Lorenz z one step ahead cross prediction. Parameters are as stated in Sec. 2.5, except for (a)
and (e) where Kte = 30000.

input delay of d = 1 to be consistent with this prior knowledge. For the Lorenz z cross142

prediction task, on the other hand, there is a strong dependence on the history of the143

Lorenz x variable. In this case the best performance is achieved when the second input144

is delayed by d = 14 time steps. The optimal delayed-input scaling G2 is larger for the145

Lorenz z task than the Lorenz x task (as seen by comparing the positions of the minima146

in Fig. 4 e and f), indicating that the cross prediction task requires a greater degree of147

nonlinearity as well as a longer memory.148

In order to demonstrate that the improvement in the performance with delayed149

input is not specific to the reservoir parameters used for Fig. 3, in Fig. 5 we show the150

NRMSE for the Mackey-Glass s = 10 task as a function of (a) the virtual node coupling151

strength K and (b) the coupling delay N (i.e. the number of memory cells). These152

parameters have a strong influence on the properties of the reservoir. In both cases the153

NRMSE without delayed input (orange dotted line) shows a large variation over the154

respective parameter ranges and is always larger than the error with optimised delayed155

input (blue dashed line). With optimised delayed input the variation in the error is156
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Figure 4. NRMSE for optimised input delay d, as a function of the delayed-input scaling G2 for
Mackey-Glass (a) one, (b) three and (c) ten step ahead prediction, (d) NARMA10, (c) Lorenz x one
step ahead prediction and (f) Lorenz z one step ahead cross prediction. The error bars indicate
the standard deviation. The optimal input delays are (a) d = 14, (b) d = 13, (c) d = 9, (d) d = 9,
(e) d = 1 and (f) d = 15. The remaining parameters are as stated in Sec. 2.5, except for (a) and (e)
where Kte = 30000.

comparatively small, demonstrating that the inclusion of the delayed input works well157

independent of the reservoir properties. The peak in the NRMSE at N = 30 in Fig. 5 b is158

a well known resonance effect that occurs at resonances between the number of virtual159

nodes and the coupling range N, equivalent to clock time and delay resonances in time160

continuous systems [44].161

To further demonstrate the universality of this method, we show the NARMA10 er-162

ror with delayed input for a time-continuous reservoir in Fig. 6. In this case the reservoir163

is given by the Stuart-Landau equation with time-delayed feedback (see Appendix B).164

The reservoir parameters have not been optimised for the NARMA10 task, resulting in165

very poor performance without delayed input (G2 = 0). With optimised delayed input166

parameters reasonable performance is achieved, similar to the optimal results for the167

memory cell reservoir in Fig. 3 d. For the Stuart-Landau reservoir optimal performance168

is achieved for the input delay d = 10. Whereas, for the memory cell reservoir the169

optimal input delay is d = 9. This is because the required input delay depends both on170

the dynamics of the reservoir as well as the memory requirements of the particular task.171

4. Discussion172

We have shown that, for various time series prediction tasks, including a delayed173

version of the input can lead to a substantial improvement in the performance of a174

reservoir. We have demonstrated this using a simple map describing a semiconductor175

optical amplifier non-linearity and a ring-like coupling realized via memory cells. With176

this approach we were able to use one unaltered reservoir to perform well on six different177

tasks, each with different memory and nonlinear transform requirements. The perfor-178

mance boost due to the delayed input is achieved over a wide range of the reservoir179

parameters and was also demonstrated for a time-continuous system, indicating that180

our approach is applicable to a wide range of reservoirs.181
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Figure 5. NRMSE for Mackey-Glass 10 step ahead prediction as a function of (a) the virtual node
coupling strength K and (b) the coupling delay N. The orange dotted (blue dashed) lines show the
results without (with) delayed input. Along the blue curve the delayed input parameters d and
G2 have been optimised (see Fig. A1 in Appendix A for their values). The error bars indicate the
standard deviation. All remaining parameters are as stated in Sec. 2.5.

Figure 6. NRMSE for the NARMA10 task as a function of the delayed input parameters d and G2

using the Stuart-Landau delay-based reservoir computer described in Appendix B.

Our results are significant for a number of reasons. Firstly, we have demonstrated182

that computationally expensive hyperparameter optimisation can be circumvented by183

tuning only two input parameters. By including an additional delayed input, reasonable184

performance can be achieved using an unoptimised reservoir. Nevertheless, we note that185

depending on the requirements for a given task additional hyperparameter optimisation186

may be necessary. Secondly, to the best of our knowledge, this is the first demonstra-187

tion of an identical reservoir performing well on such a large range of tasks. Thirdly,188

the simplicity of our approach means that it is well suited to be applied on physical189

reservoirs.190

This study has raised several questions surrounding delay-based reservoir opti-191

misation that require further investigation. For example, the optimal delayed-input192

parameters are task dependent and how these relate to a given task is not fully un-193

derstood. The NARMA10 results presented in this study indicate that the optimal194

delayed-input parameters are related both to the reservoir and requirements of the task.195

This means that it may be possible to not only use reservoir computing for real world196

time series prediction tasks, but also to gain insights into the dynamical systems being197

investigated. For example, in tasks such as El Nino prediction where the underlying198

dynamical system is very complex and the relevant physical processes are not fully199

understood [45]. Here, investigations surrounding delay-based input could provide200

critical insight into the involved timescales. Furthermore, the minimum requirements201

for a reservoir to yield good performance on a range of tasks by only tuning the delayed202

input parameters, remain to be determined.203

A natural extension of our proposed approach is to include multiple delayed204

input terms. This would bring the reservoir computing approach closer to classical205

statistical forecasting methods such as NVAR and could lead to a further improved206

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2021                   



Version October 31, 2021 submitted to Journal Not Specified 10 of 12

performance, especially for tasks involving multiple disparate timescales. However,207

possible performance improvement with added input terms must be weighed against208

the associated increase in the computational cost as each added input adds two new209

optimisation parameters.210
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Abbreviations220

The following abbreviations are used in this manuscript:221

222

RC Reservoir computing
NVAR Nonlinear vector autoregression
NRMSE Normalise root mean squared error

223

Appendix A Optimised input parameters224

Figure A1. Values for the optimised input parameters G2 (orange) and d (blue), corresponding to
the Mackey-Glass s = 10 results depicted in Fig. 5, as a function of (a) the virtual node coupling
strength K and (b) the coupling delay N. All remaining parameters are as stated in Sec. 2.5.

The optimised values of the delayed-input scaling d and the input delay d corre-225

sponding to Fig. 5 are given in Fig. A1.226

Appendix B Stuart-Landau delay-based reservoir computer227

The Stuart-Landau system with time delayed feedback is given by

dZ
dt

=
(

λSL + J(t) + iω + γ|Z|2
)

Z + KeiφZ(t− τ). (A1)

The parameter values are given in Table A1. The input sequence J(t) for this system228

is comprised of piece-wise constant steps of length θ = T/Nv, T is the clock time [42].229

For this system we use regularisation by noise, meaning that we added Gaussian white230

noise of strength Rnoise to the state matrix S entries.231
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Table A1. Reservoir and input parameter values for the Stuart-Landau RC.

Parameter Value Parameter Value

λSL -0.02 ω 0
γ -0.1 K 0.1
τ 105 φ 0

Nv 30 Rnoise 1e-7
G1 0.01 J0 0
T 80
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