Herzog, Sebastian and Schiepel, Daniel and Guido, Isabella and Barta, Robin and Wagner, Claus (2021) A Probabilistic Particle Tracking Framework for Guided and Brownian Motion Systems with High Particle Densities. SN Computer Science, 2 (485), pp. 1-20. Springer Nature. doi: 10.1007/s42979-021-00879-z. ISSN 2661-8907.
![]() |
PDF
- Published version
4MB |
Official URL: https://link.springer.com/article/10.1007%2Fs42979-021-00879-z
Abstract
This paper presents a new framework for particle tracking based on a Gaussian Mixture Model (GMM). It is an extension of the state-of-the-art iterative reconstruction of individual particles by a continuous modeling of the particle trajectories considering the position and velocity as coupled quantities. The proposed approach includes an initialization and a processing step. In the first step, the velocities at the initial points are determined after iterative reconstruction of individual particles of the first four images to be able to generate the tracks between these initial points. From there on, the tracks are extended in the processing step by searching for and including new points obtained from consecutive images based on continuous modeling of the particle trajectories with a Gaussian Mixture Model. The presented tracking procedure allows to extend existing trajectories interactively with low computing effort and to store them in a compact representation using little memory space. To demonstrate the performance and the functionality of this new particle tracking approach, it is successfully applied to a synthetic turbulent pipe flow, to the problem of observing particles corresponding to a Brownian motion (e.g., motion of cells), as well as to problems where the motion is guided by boundary forces, e.g., in the case of particle tracking velocimetry of turbulent Rayleigh-Bénard convection.
Item URL in elib: | https://elib.dlr.de/145086/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | A Probabilistic Particle Tracking Framework for Guided and Brownian Motion Systems with High Particle Densities | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 1 November 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | SN Computer Science | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Volume: | 2 | ||||||||||||||||||||||||
DOI: | 10.1007/s42979-021-00879-z | ||||||||||||||||||||||||
Page Range: | pp. 1-20 | ||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||
Publisher: | Springer Nature | ||||||||||||||||||||||||
ISSN: | 2661-8907 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Gaussian Mixture Model, Rayleigh–Bénard convection, Particle Tracking Velocimetry | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||||||
HGF - Program Themes: | Rail Transport | ||||||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||||||
DLR - Program: | V SC Schienenverkehr | ||||||||||||||||||||||||
DLR - Research theme (Project): | V - NGT BIT (old) | ||||||||||||||||||||||||
Location: | Göttingen | ||||||||||||||||||||||||
Institutes and Institutions: | Institute for Aerodynamics and Flow Technology > Ground Vehicles | ||||||||||||||||||||||||
Deposited By: | Schiepel, Dr. Daniel | ||||||||||||||||||||||||
Deposited On: | 05 Nov 2021 12:10 | ||||||||||||||||||||||||
Last Modified: | 28 Jun 2023 13:09 |
Repository Staff Only: item control page