Iulian, Calota und Faur, Daniela und Datcu, Mihai (2021) Bag-of-Words for Transfer Learning. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 808-811. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554776. ISBN 978-1-6654-0369-6. ISSN 2153-7003.
PDF
18MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9554776
Kurzfassung
Although the number of labeled datasets in Earth Observation (EO) is increasing, there is still a major gap between the Deep Learning (DL) classifiers designed in this field versus the models in Computer Vision. This gap is produced mainly by the number of datasets available, but also by the diversity of data. In EO, there are different sensors acquiring images, from multispectral (MS) or hyperspectral data, to SAR imagery. In this paper, we want to demonstrate how to reduce the divergence created by the diversity of data. We trained several DL architectures on Bag-of-Words from large-scale MS and SAR datasets, and then we used transfer learning on smaller ones and evaluated the results. With this method, we demonstrate that a DL architecture can be trained with any type of large-scale data, transformed into Bag-of-Words, and the trained model can be used further on other types of data, without regard on the number of channels.
elib-URL des Eintrags: | https://elib.dlr.de/144961/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Bag-of-Words for Transfer Learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554776 | ||||||||||||||||
Seitenbereich: | Seiten 808-811 | ||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||
ISBN: | 978-1-6654-0369-6 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Bag-of-Words, Transfer Learning, multispectral data, SAR data, Deep Learning | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||
Veranstaltungsort: | Brussels, Belgium | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||
Veranstalter : | Institute of Electrical and Electronics Engineers | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||||||
Hinterlegt am: | 18 Nov 2021 12:20 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags