elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Self-decoration of Barium Titanate with Rhodium-NP via a facile co-precipitation route for NO sensing in hot gas environment.

Lontio Fomekong, Roussin und You, Shujie und Frohnhoven, Robert und Ludwig, Tim und Mathur, Sanjay und Saruhan-Brings, Bilge (2021) Self-decoration of Barium Titanate with Rhodium-NP via a facile co-precipitation route for NO sensing in hot gas environment. Sensors and Actuators B-Chemical, 338 (129848). Elsevier. doi: 10.1016/j.snb.2021.129848. ISSN 0925-4005.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
1MB

Offizielle URL: https://doi.org/10.1016/j.snb.2021.129848

Kurzfassung

There is an urgent need for the development of real-time gas sensors, capable of detection under hot-gas (> 400 °C) flow for instance to control exhaust emissions. In this context, Rh-doped BaTiO3 has been prepared by co-precipitation route and heat-treated at 900 °C under 2% hydrogen to obtain in-situ Rh-nanoparticle decoration of submicron BaTiO3 powder. X-Ray diffraction, Raman and X-Ray photoelectron spectrometry analysis confirm the presence of Barium Titanate phases and the substitution of Ti4+ by Rh3+. According to the analytic evidences, thermal hydrogen treatment leads probably to the diffusion of Rhodium out of titanate lattice yielding a self-decoration of the nano-sized Barium Titanate particles. Further NO-sensing tests of the sensors produced by deposition of this in-situ Rh-loaded BaTiO3 on IDE revealed, for the first time, the achievement of significantly increased selectivity and NO sensing response (e.g. R/R0 = 18 % for 200 ppm NO) under hot-gas environment (synthetic humid air as carrier gas at 900 °C) The calculated response and recovery times are reasonable and observed reproducibility confirms suitability to practical applications. Relying on the carried investigations, this good sensing performance can be explained by creation of excessive oxygen vacancies resulting through the surface diffusion of rhodium. Moreover, it is to claim that the excellent catalytic activity of rhodium plays a key role in the enhancement of NOxsensing.

elib-URL des Eintrags:https://elib.dlr.de/144932/
Dokumentart:Zeitschriftenbeitrag
Titel:Self-decoration of Barium Titanate with Rhodium-NP via a facile co-precipitation route for NO sensing in hot gas environment.
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lontio Fomekong, RoussinRoussin.LontioFomekong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
You, ShujieLuleå University of Technology, SwedenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Frohnhoven, RobertUniversity of CologneNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ludwig, TimUniversity of CologneNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mathur, Sanjaysanjay.mathur (at) uni-koeln.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Saruhan-Brings, BilgeBilge.Saruhan (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:24 März 2021
Erschienen in:Sensors and Actuators B-Chemical
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:338
DOI:10.1016/j.snb.2021.129848
Verlag:Elsevier
ISSN:0925-4005
Status:veröffentlicht
Stichwörter:: Rh-loaded BaTiO3, coprecipitation, high-temperature sensor, nitrogen oxide
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Werkstoffe und Herstellverfahren
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Werkstoff-Forschung > Hochtemperatur-und Funktionsschutzschichten
Hinterlegt von: Saruhan-Brings, Dr. Bilge
Hinterlegt am:10 Dez 2021 10:31
Letzte Änderung:01 Jan 2024 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.