elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Modelling the spatial impact of regional planning and climate change prevention strategies on land consumption in the Rhine-Ruhr Metropolitan Area 2017–2030

Rienow, Andreas and Kantakumar, Lakshmi N. and Ghazaryan, Gohar and Dröge-Rothaar, Arne and Sticksel, Sarah and Trampnau, Birte and Thonfeld, Frank (2022) Modelling the spatial impact of regional planning and climate change prevention strategies on land consumption in the Rhine-Ruhr Metropolitan Area 2017–2030. Landscape and Urban Planning, 217, pp. 1-20. Elsevier. doi: 10.1016/j.landurbplan.2021.104284. ISSN 0169-2046.

Full text not available from this repository.

Official URL: https://www.sciencedirect.com/science/article/pii/S0169204621002474

Abstract

Urban sprawl is a ubiquitous with a complex network of driving forces and human and natural impacts on various scales of the coupled human-environment urban system. In Germany, a land consumption of 30 ha per day is envisaged. In that regard, the effect of growing metropolitan areas on the climate of local neighborhoods becomes more and more a topic in regional planning. Accordingly, the objectives of the study are a) to contribute to the climate change related land cover simulation efforts in Germany in a spatially explicit manner with a resolution of 30 m, b) to investigate future land consumption rates and population growth rates having a view on goal 11 of UN’s SDG, and c) analyze the spatial impact of planning policies in regard to land use planning and official climate change prevention strategies using Rhine-Ruhr Metropolitan Area (RRMA) in Western Germany as a study area. The study makes use of land use and land cover classification of multispectral satellite data and the derivation of land surface temperature based on Landsat satellite in order to calibrate and validate the urban growth model SUSM (scenario-based urban growth simulation model). Two scenarios for future land consumption 2030 are implemented and the future impacts of urban growth with the projection of land consumption rate (LCR), population growth rate (PGR), and LCRPGR index on municipality level, as well as the impact on regions vulnerable to climate change evaluated. The comparison of simulated urban growth to observed urban growth from 2005 to 2017 shows that the PA of SUSM for historic scenario is 68.06% with an overall accuracy of 97.15%, a Matthews correlation coefficient of 0.66, a figure of merit of 0.51 and area under curve of 0.84. The total quantity of new urban areas of our SUSM simulation 2030 were approximately 283 km2. While the difference in the simulated total quantity is nearly zero, the simulated allocation of new urban areas across the districts can differ by up to 25 km2 in the two scenarios. The number of municipalities with efficient urban land development rates increases in the SUSM scenario where no regional land development plan has been incorporated. This holds true for the number of municipalities with inefficient land use where even an increase from no plan to plan can be observed. LCRPGR is negative in most municipalities reflecting opposing trends of population and land consumption development. Most of new urban areas are distributed in open spaces important for the regional climate change prevention strategy. 32.98 % of new urban areas in our region of interest can be found in these zones in the planning scenario and 25.76 % in the scenario without planning information in SUSM model. It can be concluded that regional planning in RRMA region has no positive effect on the interregional development of future land consumption in terms of quantity, allocation, and impact on climate change prevention.

Item URL in elib:https://elib.dlr.de/144793/
Document Type:Article
Title:Modelling the spatial impact of regional planning and climate change prevention strategies on land consumption in the Rhine-Ruhr Metropolitan Area 2017–2030
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
Rienow, Andreasandreas.rienow (at) ruhr-uni-bochum.dehttps://orcid.org/0000-0003-3893-3298
Kantakumar, Lakshmi N.Lakshmikanth (at) bvieer.edu.inhttps://orcid.org/0000-0002-8912-3853
Ghazaryan, GoharGohar.Ghazaryan (at) ruhr-uni-bochum.dehttps://orcid.org/0000-0003-4606-0140
Dröge-Rothaar, ArneArne.Droege-Rothaar (at) ruhr-uni-bochum.deUNSPECIFIED
Sticksel, SarahS.Sticksel (at) stadt-duisburg.deUNSPECIFIED
Trampnau, Birtebirte.trampnau (at) rub.deUNSPECIFIED
Thonfeld, FrankFrank.Thonfeld (at) dlr.dehttps://orcid.org/0000-0002-3371-7206
Date:2022
Journal or Publication Title:Landscape and Urban Planning
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:217
DOI :10.1016/j.landurbplan.2021.104284
Page Range:pp. 1-20
Publisher:Elsevier
ISSN:0169-2046
Status:Published
Keywords:Regional planning, Climate change prevention, Scenario-based modeling, SUSM, Remote sensing, Land consumption
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Remote Sensing and Geo Research
Location: Oberpfaffenhofen
Institutes and Institutions:German Remote Sensing Data Center > Land Surface Dynamics
Deposited By: Thonfeld, Dr. Frank
Deposited On:02 Nov 2021 20:13
Last Modified:02 Nov 2021 20:13

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.