Sabater Campomanes, Christian und Stürmer, Philipp und Bekemeyer, Philipp (2021) Fast Predictions of Aircraft Aerodynamics using Deep Learning Techniques. In: AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021. AIAA Aviation 2021 Forum, 2021-08-02 - 2021-08-06, Virtuell. doi: 10.2514/6.2021-2549. ISBN 978-162410610-1.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The numerical analysis of aerodynamic components based on the Reynolds Average Navier Stokes equation has become critical for the design of transport aircraft but still entails large computational cost. Simulating a multitude of different flow conditions with high-fidelity methods as required for loads analysis or aerodynamic shape optimization is still prohibitive. Within the past few years the application of machine learning methods has being proposed as a potential way to overcome these shortcomings. This is leading towards a new data-driven paradigm for the modelling of physical problems. The objective of this paper is the development of a deep learning methodology for the prediction of aircraft surface pressure distributions and the rigorous comparison with existing state-of-the-art non-intrusive reduced order models. Three data driven-methods, Gaussian Processes, proper orthogonal decomposition combined with an interpolation technique and deep learning are proposed. Results are compared for a 2D airfoil case and the NASA Common Research Model transport aircraft as a relevant 3D case. Results show that all methods are able to properly predict the surface pressure distribution at subsonic conditions. In transonic flow, when shock waves and separation lead to non-linearities, deep learning methods outperform the others by also capturing the shock wave location and strength accurately
elib-URL des Eintrags: | https://elib.dlr.de/144589/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Fast Predictions of Aircraft Aerodynamics using Deep Learning Techniques | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | August 2021 | ||||||||||||||||
Erschienen in: | AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.2514/6.2021-2549 | ||||||||||||||||
ISBN: | 978-162410610-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Deep Neural-Networks, Reduced Order Modeling, Computational Fluid Dynamics, Large-Scale Aircraft | ||||||||||||||||
Veranstaltungstitel: | AIAA Aviation 2021 Forum | ||||||||||||||||
Veranstaltungsort: | Virtuell | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 2 August 2021 | ||||||||||||||||
Veranstaltungsende: | 6 August 2021 | ||||||||||||||||
Veranstalter : | American Institute of Aeronautics and Astronautics, Inc. | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, BS | ||||||||||||||||
Hinterlegt von: | Bekemeyer, Philipp | ||||||||||||||||
Hinterlegt am: | 19 Okt 2021 08:48 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags