Jahan, Kanwal und Niemeijer, Joshua und Kornfeld, Nils und Roth, Michael (2021) Deep Neural Networks for Railway Switch Detection and Classification Using Onboard Camera. In: 2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021. IEEE. IEEE Symposium Series on Computational Intelligence, 2021-12-04 - 2021-12-07, USA. doi: 10.1109/SSCI50451.2021.9659983. ISBN 978-1-7281-9048-8. (im Druck)
PDF
3MB |
Kurzfassung
Recent years have seen major advances in Artificial Intelligence (AI) methods for environment perception in intelligent transportation systems. Although most of them have been achieved in the automotive sector there is a similar demand in the railway domain. This paper investigates Deep Neural Network (DNN) based environment perception using vehicle-borne camera images from the rail domain. Specifically, railway switch detection and classification are addressed as a relevant example for a DNN application with potential use for landmark positioning, environment perception, and condition monitoring. The lack of large training data sets in the railway sector (in contrast to the automotive domain) is compensated by an appropriate DNN architecture, an anchor box ratio optimization scheme, and transfer learning. The presented experimental results advocate for the adopted approach.
elib-URL des Eintrags: | https://elib.dlr.de/144476/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Deep Neural Networks for Railway Switch Detection and Classification Using Onboard Camera | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 15 Oktober 2021 | ||||||||||||||||||||
Erschienen in: | 2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/SSCI50451.2021.9659983 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
ISBN: | 978-1-7281-9048-8 | ||||||||||||||||||||
Status: | im Druck | ||||||||||||||||||||
Stichwörter: | Switch-detection. Switch-classification, deep neural networks, transfer learning | ||||||||||||||||||||
Veranstaltungstitel: | IEEE Symposium Series on Computational Intelligence | ||||||||||||||||||||
Veranstaltungsort: | USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 4 Dezember 2021 | ||||||||||||||||||||
Veranstaltungsende: | 7 Dezember 2021 | ||||||||||||||||||||
Veranstalter : | IEEE Computational Intelligence Society | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Schienenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V SC Schienenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Digitalisierung und Automatisierung des Bahnsystems (alt) | ||||||||||||||||||||
Standort: | Berlin-Adlershof , Braunschweig | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Informationsgewinnung und Modellierung, BS Institut für Verkehrssystemtechnik > Informationsgewinnung und Modellierung, BA Institut für Verkehrssystemtechnik > Kooperative Systeme, BS | ||||||||||||||||||||
Hinterlegt von: | Jahan, Kanwal | ||||||||||||||||||||
Hinterlegt am: | 07 Jan 2022 08:57 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags