Yao, Wei und Dumitru, Corneliu Octavian und Datcu, Mihai (2021) An Active Learning Tool for the Generation of Earth Observation Image Benchmarks. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IGARSS 2021, 2021-07-12 - 2021-07-16, online. doi: 10.1109/igarss47720.2021.9554198.
PDF
3MB |
Kurzfassung
This paper describes an active learning tool for the genera-tion of Earth Observation (EO) benchmark datasets. This toolis able to generate training datasets, based on its active learn-ing strategy with a classification accuracy of around 90%.Afterwards, a data cleaning tool is needed, in order to cor-rect noisy data and provide a clean dataset to be stored in thebenchmark database, and for subsequent benchmark verifica-tion. The data cleaning procedure is supported by unsuper-vised learning, using clustering algorithms to group similarpatterns, and dimension reduction algorithms to embed themin lower dimension with annotated labels. Moreover, interac-tive visualizations are implemented in most modules to helpbetter manipulate datasets and get better understandings.
elib-URL des Eintrags: | https://elib.dlr.de/144441/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | An Active Learning Tool for the Generation of Earth Observation Image Benchmarks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2021 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/igarss47720.2021.9554198 | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Benchmarks, active learning, interactivevisualization, unsupervised learning, data cleaning | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||
Veranstaltungsort: | online | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 12 Juli 2021 | ||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Yao, Wei | ||||||||||||||||
Hinterlegt am: | 08 Okt 2021 12:32 | ||||||||||||||||
Letzte Änderung: | 07 Jun 2024 09:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags