Yao, Wei und Dumitru, Corneliu Octavian und Datcu, Mihai (2021) An Active Learning Tool for the Generation of Earth Observation Image Benchmarks. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IGARSS 2021, 2021-07-12 - 2021-07-16, online. doi: 10.1109/igarss47720.2021.9554198.
|
PDF
3MB |
Kurzfassung
This paper describes an active learning tool for the genera-tion of Earth Observation (EO) benchmark datasets. This toolis able to generate training datasets, based on its active learn-ing strategy with a classification accuracy of around 90%.Afterwards, a data cleaning tool is needed, in order to cor-rect noisy data and provide a clean dataset to be stored in thebenchmark database, and for subsequent benchmark verifica-tion. The data cleaning procedure is supported by unsuper-vised learning, using clustering algorithms to group similarpatterns, and dimension reduction algorithms to embed themin lower dimension with annotated labels. Moreover, interac-tive visualizations are implemented in most modules to helpbetter manipulate datasets and get better understandings.
| elib-URL des Eintrags: | https://elib.dlr.de/144441/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | An Active Learning Tool for the Generation of Earth Observation Image Benchmarks | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2021 | ||||||||||||||||
| Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/igarss47720.2021.9554198 | ||||||||||||||||
| Seitenbereich: | Seiten 1-4 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Benchmarks, active learning, interactivevisualization, unsupervised learning, data cleaning | ||||||||||||||||
| Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||
| Veranstaltungsort: | online | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 12 Juli 2021 | ||||||||||||||||
| Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Yao, Wei | ||||||||||||||||
| Hinterlegt am: | 08 Okt 2021 12:32 | ||||||||||||||||
| Letzte Änderung: | 08 Aug 2025 10:12 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags