Azimi, Seyed Majid und Kiefl, Ralph und Gstaiger, Veronika und Bahmanyar, Reza und Merkle, Nina Marie und Henry, Corentin und Rosenbaum, Dominik und Kurz, Franz (2021) Automatic Object Segmentation To Support Crisis Management Of Large-scale Events. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Seiten 433-440. ISPRS 2021, 2021-07-05 - 2021-07-09, Nice, Frankreich. doi: 10.5194/isprs-archives-XLIII-B2-2021-433-2021. ISSN 1682-1750.
PDF
21MB |
Offizielle URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2021/433/2021/
Kurzfassung
The management of large-scale events with a widely distributed camping area is a special challenge for organisers and security forces and requires both comprehensive preparation and attentive monitoring to ensure the safety of the participants. Crucial to this is the availability of up-to-date situational information, e.g. from remote sensing data. In particular, information on the number and distribution of people is important in the event of a crisis in order to be able to react quickly and effectively manage the corresponding rescue and supply logistics. One way to estimate the number of persons especially at night is to classify the type and size of objects such as tents and vehicles on site and to distinguish between objects with and without a sleeping function. In order to make this information available in a timely manner, an automated situation assessment is required. In this work, we have prepared the first high-quality dataset in order to address the aforementioned challenge which contains aerial images over a large-scale festival of different dates. We investigate the feasibility of this task using Convolutional Neural Networks for instance-wise semantic segmentation and carry out several experiments using the Mask-RCNN algorithm and evaluate the results. Results are promising and indicate the possibility of function-based tent classification as a proof-of-concept. The results and thereof discussions can pave the way for future developments and investigations.
elib-URL des Eintrags: | https://elib.dlr.de/144380/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||||||||||
Titel: | Automatic Object Segmentation To Support Crisis Management Of Large-scale Events | ||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||
Datum: | Juni 2021 | ||||||||||||||||||||||||||||||||||||
Erschienen in: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||
DOI: | 10.5194/isprs-archives-XLIII-B2-2021-433-2021 | ||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 433-440 | ||||||||||||||||||||||||||||||||||||
Name der Reihe: | XLIII-B2-2021 | ||||||||||||||||||||||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||
Stichwörter: | Crisis Management, Segmentation, Aerial Imagery, Large-scale Events, Machine Learning | ||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | ISPRS 2021 | ||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | Nice, Frankreich | ||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 5 Juli 2021 | ||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 9 Juli 2021 | ||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - D.MoVe (alt), R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Azimi, Seyedmajid | ||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 08 Okt 2021 12:27 | ||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags