
AUTOMATIC OBJECT SEGMENTATION TO SUPPORT CRISIS MANAGEMENT OF
LARGE-SCALE EVENTS

S. M. Azimi1,∗, R. Kiefl2, V. Gstaiger1, R. Bahmanyar1, N. Merkle1, C. Henry1, D. Rosenbaum1, F. Kurz1

1 Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
{seyedmajid.azimi; veronika.gstaiger; reza.bahmanya; nina.merkle; corentin.henry; dominik.rosenbaum; franz.kurz}@dlr.de

2 German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
ralph.kiefl@dlr.de

Commission II,WG 6

KEY WORDS: Crisis Management, Segmentation, Aerial Imagery, Large-scale Events, Machine Learning

ABSTRACT:

The management of large-scale events with a widely distributed camping area is a special challenge for organisers and security
forces and requires both comprehensive preparation and attentive monitoring to ensure the safety of the participants. Crucial to this
is the availability of up-to-date situational information, e.g. from remote sensing data. In particular, information on the number
and distribution of people is important in the event of a crisis in order to be able to react quickly and effectively manage the
corresponding rescue and supply logistics. One way to estimate the number of persons especially at night is to classify the type
and size of objects such as tents and vehicles on site and to distinguish between objects with and without a sleeping function. In
order to make this information available in a timely manner, an automated situation assessment is required. In this work, we have
prepared the first high-quality dataset in order to address the aforementioned challenge which contains aerial images over a large-
scale festival of different dates. We investigate the feasibility of this task using Convolutional Neural Networks for instance-wise
semantic segmentation and carry out several experiments using the Mask-RCNN algorithm and evaluate the results. Results are
promising and indicate the possibility of function-based tent classification as a proof-of-concept. The results and thereof discussions
can pave the way for future developments and investigations.

1. INTRODUCTION

Large-scale events with widely distributed parking and camp-
ing areas represent a particular challenge for event and crisis
management and require extensive preparation and constant
monitoring to guarantee the safety of participants. Injuries and
deaths occur repeatedly at large gatherings of people and for
years research has been conducted into the causes of accidents
and ways of avoiding them in order to make large events
safer (Fruin, 1993, Helbing et al., 2000). In order to prevent
situations of danger or damage at large events and to be able to
act quickly and effectively in an emergency, decision-makers
need information with spatial reference for a situation picture
that is as close to reality as possible during the event. Due to
the increasing availability of high resolution remote sensing
data and the growing awareness of the possibility of deriving
area-wide information from it, this is more and more being
integrated into disaster management procedures (Aina, Bello,
2014, Römer et al., 2016). In the event of an emergency, it
must be ensured that rescue routes are wide enough and, above
all, free of any objects that would obstruct the passability
of the emergency services and that participants can leave
the site at any time. An important aspect is therefore the
information on both the number of event participants and
their distribution on the event site. In general, this infor-
mation is also essential for the installation of infrastructures
such as waste disposal or the supply of food and drinking water.

There are existing works (Meynberg et al., 2016, Bahmanyar et
al., 2019) on crowd analysis and the measurement of their den-
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Figure 1. Illustration of a sample result from DLR-AerialTent
dataset with pixel- and instance-wise segmentation using aerial
imagery of a music festival in 2013 in Germany with 9cm/px
GSD. The red outlined area represents a sample from the test set.
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Figure 2. Illustration of the DLR-AerialTent dataset with overlaid annotations for 10 semantic classes including different types of tents,
vehicles and infrastructure elements. The images were acquired during a music festival in Germany. The Ground Sampling Distance
(GSD) of the images is 9cm/px and 10cm/px respectively. The image in the center shows the festival area and the selected training
and test areas of the 2013 and 2016 datasets. Color codes: ����������������� tent: sleep function, ����������������� small vehicle/transporter, ����������������� trailer, ����������������� truck/bus,
����������������� camper/caravan, ����������������� pavilion/large tent: assembly and supply function, ����������������� awning, tarpaulin, ����������������� inflatable pool, ����������������� infrastructure,
����������������� other objects (“clutter”).

sity on festival sites; however, the situation at night has not yet
been investigated. In order to estimate the distribution and num-
ber of people on the festival site as accurately as possible, we
propose the approach of analyzing the sleeping facilities on the
different sites. In particular, the type and size of tents, vehicles
and similar objects has to be determined and a distinction ac-
cording to their function has to be made, such as those with and
without a sleeping function. In order to make this information
available in a timely manner, an automated situation assessment
is required as a manual evaluation of larger areas would be too
time-consuming.

In recent years, an end-to-end monitoring system has been de-
veloped, improved and tested under real world conditions and
was successfully demonstrated at several large scale events
(Römer et al., 2016). It aims to support the management of
events and authorities in charge of security and rescuing effort
by recording and providing optical aerial imagery and relevant
derived information. Examples include overviews of the cur-
rent traffic situation and the occupancy of parking and camp-
ing areas. This system consists of a chain of loosely coupled
components. It includes an optical camera system (Kurz et al.,
2014), software and hardware for pre-processing and analysing
data on board, a down-link for data transmission in near real-
time, additional ground-based components for information ex-
traction (Römer et al., 2014, Kersten, 2014) as well as modules
for provision and interactive visualisation of situational infor-
mation based on web services (Römer et al., 2016).
To prepare future advancements of the image analysis compo-
nents of such a processing chain, this study focuses on the de-
tection and feature-based classification of vehicles, tents, and
similar objects.

2. RELATED WORKS

In recent years, deep learning methods have shown promis-
ing object detection and instance-wise segmentation results for
ground imagery and outperformed the traditional methods. The
enhanced performance owe its rapid promotion to a large extent
to large-scale datasets such as ImageNet (Deng et al., 2009),

Pascal VOC (Everingham et al., 2010) and MS-COCO (Lin et
al., 2014). However, as for aerial imagery, similar datasets are
scarce, which has slowed down the development of such meth-
ods. Furthermore, the existing aerial image datasets for seman-
tic segmentation are either limited to a few individual classes
such as roads and building boundaries in the INRIA (Maggiori
et al., 2017), Massachusetts (Mnih, 2013), SpaceNet (Van Etten
et al., 2018), and DeepGlobe (Demir et al., 2018) datasets, or
provide very coarse classes in the ISPRS Vaihingen and Pots-
dam (Cramer, 2010) datasets. For object detection and instance-
wise segmentation on the other hand, multi-class object de-
tection plays a major role in remote sensing applications and
several datasets are public available for these tasks. Example
aerial image datasets in this area are iSAID (Waqas Zamir et
al., 2019), DOTA (Xia et al., 2017), TAS (Heitz, Koller, 2008),
VEDAI (Razakarivony, Jurie, 2016), COWO (Mundhenk et
al., 2016), DLR-3K-Munich-Vehicle (Liu, Mattyus, 2015), and
UCAS-AOD (Zhu et al., 2015). These datasets were generated
either for general purposes or particular applications. However,
to the best of our knowledge, none of them tackles the tent clas-
sification in large events with campsites. To address this lim-
itation, we propose a new aerial image dataset with detailed
annotations, the so-called “DLR-AerialTent” (see Figure 2).

To investigate the feasibility of instance-wise segmentation
for function-based tent classification, we apply, among others,
a well-established variant of the Region-based Convolutional
Neural Network (RCNN) algorithm (Girshick et al., 2014), the
so-called Mask-RCNN (He et al., 2017), as our baseline. As the
other RCNN variants, Fast-RCNN (Girshick, 2015) augments
the detection performance of RCNN by the minimization of
the region proposal regression and classification losses simul-
taneously. Faster-RCNN (Ren et al., 2015) improves the local-
ization accuracy of Fast-RCNN by deploying a region proposal
network (RPN) for learning the region proposals. Faster-RCNN
can be further improved by multi-scale training and testing to
learn the feature maps in multiple levels. However, this in-
creases the memory usage and the inference time. Alternatively,
image pyramids or Feature Pyramid Networks (FPNs) (Pinheiro
et al., 2016, Honari et al., 2016, Ghiasi, Fowlkes, 2016, Newell
et al., 2016, Lin et al., 2017) can be utilized to improve the per-
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Figure 3. Samples of objects of interests in the DLR-AerialTent dataset which are commonly present in large scale events and camps.

class name number of instances from 2013 number of instances from 2016 total number per class
training test training test training test

����������������� tent (sleeping function) 7474 3344 1507 822 8981 4166
����������������� small vehicle/transporter 2656 1065 1434 743 4090 1808
����������������� trailer 173 88 1434 743 324 147
����������������� truck/bus 22 17 22 14 44 31
����������������� camper/caravan 169 55 519 197 688 252
����������������� pavilion/large tent 1344 501 540 281 1884 782
����������������� awning, tarpaulin 492 221 358 144 850 365
����������������� inflatable pool 31 17 13 5 44 22
����������������� infrastructure 155 66 170 64 325 130
����������������� other objects (“clutter”) 172 146 303 68 475 214

total number of instances 12688 5520 5017 2397 17705 7917

Table 1. Overview of the ten classes contained in the dataset and their instance numbers.

formance in different scales at a marginal extra cost. Rotated
region proposals (Liu et al., 2017) improve the localization of
the oriented bounding box (OBB) tasks by predicting object ori-
entations using single shot detector (SSD) (Liu et al., 2016).
For instance-wise segmentation, a new method has been pro-
posed which applies adaptive weighted pooling and discrimina-
tive Region of Interest (RoI)-pooling in a two-stage process to-
gether with a RPN (Cao et al., 2020). In addition, ISDNet (Garg
et al., 2020) has been developed which applies atrous spatial
pyramid pooling (ASPP) module from the DeepLabv3+ (Chen
et al., 2018) algorithm in the Mask-RCNN and Cascaded-
RCNN manner. In this paper, we are providing a new aerial
dataset for instance-wise segmentation with highly accurate an-
notations and fine-grained classes for camp-relevant objects to
promote the development of models for previously unsupported
tasks, such as accommodation-wise event monitoring. Addi-
tionally, we are carrying out first evaluations of one of the well-
established instance-wise segmentation algorithms.

3. DATASET

This study is based on true color aerial images taken over a fes-
tival in Germany in early August 2013 and 2016. The images
were acquired by a camera-array sensor system mounted on a
helicopter, which provides high flexibility for airborne moni-
toring and is usually available to rescue and security related
authorities and organizations (Kurz et al., 2014). The images
cover an area of 3.44 km2 and were acquired at a flight height
of around 1000 m above ground, which results in a ground sam-
pling distance of 9 cm and 10 cm, respectively. Note that a part
of the aerial images acquired in 2013 were already described
in (Römer et al., 2016). We prepared a dataset called “DLR-
AerialTent” with images from the years 2013 and 2016 and
split it into training and test sets as shown in Figure 2. It is
composed of the following 10 semantic classes: 1) tents (with
sleeping function), 2) small vehicle / transporter, 3) trailer, 4)

truck/bus, 5) camper/caravan, 6) pavilion/large tent (assembly
and supply function), 7) awning, tarpaulin, 8) inflatable pool,
9) infrastructure and 10) other objects (“clutter”). This classifi-
cation is based on experiences with large events gained over the
past 10 years. It takes into account the most common and, for
our research question, most important classes of objects found
in parking and camping areas at festivals and similar large scale
events in Germany, and should be considered as a first proposal
for such a dataset. Figure 3 shows some samples of the differ-
ent classes and Table 1 provides an overview of the classes and
the number of instances contained in each class.

In total, 25622 objects have been manually derived and labeled
by experts from which 17705 (69.10%) are in the training set
and 7917 (30.90%) are in the test set. From the 2013 dataset,
there are 12688 (69.7%) and 5520 (30.3%) objects in the train-
ing and test sets, respectively. As for 2016, there are 5017
(67.7%) and 2397 (32.3%) objects divided into training and
test sets, respectively. Area-wise coverage speaking, 147430.7
m2 (68.1%) are in the training set and 69142.8 m2 (31.9%) are
included in the test set from which 97343.2 m2 (68.1%) and
45595.1 m2 (31.9%) are from 2013, 50087.4 m2 (68.0%) and
23547.7 m2 (32.0%) from the 2016 festival are divided into
training and test sets, respectively.

4. METHOD

At the beginning of this research work we would like to find
out if it is possible to detect and distinguish tents based on their
function. For this reason, we apply a pixel-wise semantic seg-
mentation on a small dataset and focus on identifying and lo-
calizing tents with sleeping function, pavilion/large tents and
vehicles. First, we annotate a part of the aerial image of 2013
to serve as training set and then, we test our methods on the
rest of the image. A two stream pixel-wise semantic segmen-
tation algorithm is used which considers large and small scale
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objects to combine shallow features from high spatial resolu-
tion inputs and rich features from low spatial resolution inputs
as described in (d’Angelo et al., 2019). The first segmentation
results are visible in the left red outlined sample in Figure 1.
After achieving these promising results, we set our goal to iden-
tify further types of tents, vehicles and other artificial structures
such as infrastructure elements.

In order to localize objects more accurately and to be be able
to count each instance object, each object of interest has to be
identified separately regardless of having shared border with an-
other object having the same class. Therefore, we decide to
analyse the images using the instance-wise segmentation ap-
proach. We choose Mask-RCNN as the base-line which is
a well-established deep neural network aiming to resolve in-
stance segmentation problems in computer vision. Specifically
speaking, it separates different instances of objects in an im-
age by providing object bounding boxes, classes and masks as
three heads. Mask-RCNN is a extension of Faster-RCNN for
instance-wise segmentation. Similar to the Faster-RCNN, there
are also two stages in Mask-RCNN. First, it generates region
proposals for possible existing object regions, and second, it
predicts the object class, refines its bounding box and gener-
ates a polygon mask in the pixel level. Both stages are added
downstream of the backbone network to extract high-level fea-
tures, which can be either single-scale or multi-scale. In other
words, to adapt Faster-RCNN to the instance-wise instance seg-
mentation, Mask-RCNN contains two heads: One head for box
object detection and another for instance mask segmentation,
which are trained end-to-end.

In contrast to the majority of the recent systems, where classifi-
cation is dependent on mask predictions, Mask-RCNN outputs
single binary mask for each RoI. During training, a multi-task
loss is utilized on each selected RoILas = Lcls+Lbox+Lmask.
The classification Lcls and bounding-box Lbox loss functions
are identical to Faster-RCNN. Considering K classes in total,
the mask branch yields a Km2-dimensional output per RoI en-
coding K binary masks of m ×m resolution. A per-pixel sig-
moid is applied to this, and we define Lmask as the average bi-
nary cross-entropy loss function. Therefore, for a sampled RoI
connected with ground-truth class k, Lmask is applied only on
the k − th mask i.e., other mask outputs do not affect the loss.
There are several sub-modules in the algorithm in the case of
multi-scale backbone such as FPN, RPN, region of interest net-
work (ROI), non-maximum suppression (NMS) and the mask
head. As in the RPN module, we minimize the multi-task loss

L ({pi}, {ti}) =
1

Nobj

∑
i

Lobj(pi, p
∗
i ) (1)

+ λ
1

Nreg

∑
i

p∗iLreg (ti, t
∗
i ) , (2)

where for an anchor i in a mini-batch, pi is the predicted prob-
ability of an object existence and p∗i is the ground-truth bi-
nary label. For the classification (object/not-object), the log-
loss Lobj(pi, p

∗
i ) = −p∗i log pi is applied, while we employ the

smooth l1 loss function

Lreg(ti, t
∗
i ) = lsmooth

1 (ti − t∗i ) with (3)

lsmooth
1 (x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(4)

for the bounding box regression. Here,

txi = (xi − xi,a)/wa, tyi = (yi − yi,a)/ha (5)
t∗xi = (x∗i − xi,a)/wa, t∗yi = (y∗i − yi,a)/ha (6)

are the coordinates of the predicted and ground-truth anchors
with xi, xi,a, and x∗i indicates the predicted, anchor, and
ground-truth respectively (the same also goes for y); andwa and
ha are the anchor width and height. Nobj and Nreg normalize
hyper-parameters (the mini-batch size as well as the number of
anchor locations); and λ denotes the balancing hyper-parameter
between the two loss functions, which is set to 10.

In the module of ROI, each chosen region proposal is regressed
and classified simultaneously.

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc−HBB(t
u, v) (7)

where horizontal bounding box (HBB) and Lcls(p, u) =
−u log p. u is the true class and p is the discrete probability
distribution of the predicted classes which is defined overK+1
categories as p = (p0, ...., pK) where “1” is for the background.
In contrast to Faster-RCNN, Mask-RCNN uses ROIAlign in-
stead of ROIPool to improve localization performance of each

Lloc−HBB(t
u, v)ROI. is defined similar to the Lreg in which

{xmin, ymin,w, h} (the upper-left coordinates, width and
height) of tu and v for the corresponding HBB coordinates are
computed.

In the case of classification of an object as background, [u ≥ 1]
ignores the offset regression. The balancing hyper-parameter λ
is also set to 1 in this case. The same region proposal is fed to
the mask-head, which outputs the boundary mask for the object
inside of the region proposal. It is accepted as final output, if the
region proposal is classified with a class except background. To
obtain the final detections, as the final post-processing, we de-
ploy NMS in which overlaps among detections is computed to
choose the best localized region and to omit redundant regions.

5. EXPERIMENTAL SETUP

We have carried out the experiments using two Titan XP GPUs
and the Detectron1 framework based on Caffe2. We trained al-
gorithms for 5000, 10000, 20000, and 30000 iterations denoted
in the result tables as 1x, 2x, 3x, and 4x. For the training, we
used the learning rate of 0.02 with a scheduled learning rate pro-
cedure of 60% and 80% of the total iteration with the gamma of
0.1. As the backbone networks, we used ResNet-50, ResNet-
101 (He et al., 2016), and ResNeXt-101 (Xie et al., 2017). The
ResNeXt backbones are trained with the cardinalities of 32 and
64 with the bottleneck widths of 8d and 4d, respectively. In
addition, the features of the last convolution layer of the 4-th
stage of the backbones (C4) as well as the FPN features are
used as inputs for the three heads. Using FPN after the back-
bone network allows images to be processed at multiple feature
scales, which should improve the performance on small objects
significantly as they are usually lost in the output of high-level
features.

The head resolution of Mask-RCNN is 28 and uses RoIAlign
for aligning the region proposals. RoI batch size for each im-
age is 512 and the image-wise batch size is 1. Moreover, we use

1https://github.com/facebookresearch/detectron
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Table 2. Comparison of the baselines for instance segmentation. (+) Trained with augmented training data. (*) augmented testing.

Backbone Feature Pyramid mAPBox mAPBox
InsW Per Category APmask

50,95

Tent Vehicle Trailer Truck Caravan Pavilion Awning Pool Infrastructure Clutter
ResNet-50 C41x 26.5 44.46 41.2 60.6 15.9 7.4 51.1 61.8 15.9 5.0 1.6 4.1
ResNet-50 C42x 26.2 44.53 41.3 60.5 16.0 3.6 50.6 62.3 15.5 4.6 1.7 5.5
ResNet-50 FPN1x 29.0 45.07 43.1 53.3 14.3 9.3 54.4 67.8 24.6 8.8 5.9 8.7
ResNet-50 FPN2x 28.0 43.97 41.5 53.2 10.6 10.1 52.0 67.8 23.1 8.5 3.9 8.9

ResNet-101 FPN1x 29.1 46.00 43.9 55.6 15.7 8.7 55.7 68.3 21.9 6.9 5.1 9.1
ResNet-101 FPN2x 25.8 41.63 40.9 46.8 8.3 6.0 50.7 64.8 20.1 8.0 4.3 7.9

ResNeXt-101 32x8d FPN1x 29.5 46.61 44.0 58.1 13.0 8.0 55.2 67.4 23.2 6.7 9.8 9.2
ResNeXt-101 32x8d FPN2x 28.4 45.39 43.7 53.3 8.0 4.5 55.5 68.5 23.5 9.3 7.5 10.6
ResNeXt-101 32x8d∗ FPN1x 31.1 47.41 44.3 58.2 12.2 8.8 57.8 69.7 27.2 7.8 12.3 12.9
ResNeXt-101 32x8d∗ FPN2x 32.0 46.98 42.8 59.3 12.2 10.9 61.2 68.8 27.3 9.2 14.3 14.2
ResNeXt-101 32x8d∗ FPN3x 31.7 47.70 43.7 60.5 11.4 9.2 59.7 69.9 26.5 9.2 14.0 13.1

ResNeXt-101 32x8d∗+ FPN3x 36.5 53.93 49.4 68.6 21.3 6.1 65.6 74.8 34.9 9.2 20.3 15.1
ResNeXt-101 32x8d∗+ FPN4x 36.2 54.04 49.9 69.5 19.4 8.4 65.3 74.5 29.5 12.7 19.5 13.6

ResNeXt-101 64x4d FPN1x 29.1 45.20 42.3 56.1 12.4 11.9 55.3 67.5 22.7 6.6 7.9 8.6
ResNeXt-101 64x4d FPN2x 29.2 45.12 42.6 55.0 14.7 10.4 53.8 68.4 20.8 8.4 9.3 8.3

Table 3. Comparison of the baselines for instance segmentation. (+) Trained with augmented training data. (*) augmented testing.

Backbone Feature Pyramid mAPBox APBox
50 APBox

75 APBox
s APBox

m APBox
l

ResNet-50 C41x 26.47 43.04 31.74 10.38 39.27 43.39
ResNet-50 C42x 26.16 42.27 30.94 10.45 32.05 45.60
ResNet-50 FPN1x 29.03 40.50 34.74 10.03 46.08 52.16
ResNet-50 FPN2x 27.97 39.40 33.21 8.63 45.02 45.86

ResNet-101 FPN1x 29.09 41.16 34.70 10.46 46.16 48.71
ResNet-101 FPN2x 25.79 38.13 30.20 6.95 41.68 48.28

ResNeXt-101 32x8d FPN1x 29.46 43.00 33.82 10.54 46.05 48.90
ResNeXt-101 32x8d FPN2x 28.45 41.63 33.13 9.44 44.05 50.20
ResNeXt-101 32x8d∗ FPN1x 31.13 45.00 36.07 10.28 48.30 50.67
ResNeXt-101 32x8d∗ FPN2x 32.03 46.02 37.45 10.83 48.63 54.13
ResNeXt-101 32x8d∗ FPN3x 31.72 44.69 36.60 10.27 49.60 54.77

ResNeXt-101 32x8d∗+ FPN3x 36.53 50.57 43.10 15.58 55.22 52.70
ResNeXt-101 32x8d∗+ FPN4x 36.25 49.47 42.99 15.28 54.75 51.85

ResNeXt-101 64x4d FPN1x 29.12 41.98 34.25 8.95 41.64 51.66
ResNeXt-101 64x4d FPN2x 29.15 41.83 34.46 10.15 45.78 50.81

Figure 4. Performance visualization for the best Mask-RCNN setting on tent and vehicle categories from DLR-AerialTent test set.The
first and third diagram from the left show the cumulative fraction of detections which were classified correctly (Cor), or represent false
positive classifications due to poor localization (Loc), or due to confusion with similar (Sim), or with other (Oth) categories, or with
the background (BG). The solid red line indicates the change of recall with the strong criteria of 0.5 (jaccard overlap) by increasing
detection numbers. The dashed red line reflects the weak criteria of 0.1 (jaccard overlap). The diagrams on the right side indicate the
distribution of top-ranked false positive factors.

union and soft-average for the bounding box and masks heuris-
tically with horizontal flipping at the test time. For data aug-
mentation at the train phase, we crop the images with the size
of 1024 × 1024 pixels and with rotations of 0◦, 90◦, 180◦ and
270◦. This results in 3280 test and 73 train samples, respec-
tively.

We employ mean Average Precision (mAP) as evaluation met-
ric, similar to the evaluation of the MS-COCO dataset. For
bounding box and segmentation mask detections, APs are com-
puted based on Intersection over Union (IoU) with 50%, 75%,
and 95% intersection rates. Furthermore, since the dataset
is heavily skewed and unbalanced, we calculate the instance-

weighted mAP (mAPinsW ).

6. RESULTS AND DISCUSSION

Table 2 and Table 3 represent a baseline comparison for the
instance-wise segmentation task. According to the results,
ResNeXt-101 with cardinality = 32 and bottleneck width = 8d
after 3× training with an augmentation in the training and test
sets outperforms the other configurations. It achieves mAPs
of 36.5% on the instance-wise segmentation task. This con-
figuration also achieves the best mAPinsW (54.04%) with 4×
training. Moreover, according to Table 2, almost all configura-
tions perform poorly for the infrastructure, inflatable pool, and
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Figure 5. Samples of visual outputs for mask segmentation and confusion in the DLR-AerialTent test set. Color codes for the first
and third row: ����������������� tent: sleep function, ����������������� small vehicle/transporter, ����������������� trailer, ����������������� truck/bus, ����������������� camper/caravan, ����������������� pavilion/large tent:
assembly and supply function, ����������������� awning, tarpaulin, ����������������� inflatable pool, ����������������� infrastructure, ����������������� other objects (“clutter”). Confusion color
codes for second and fourth: ����������������� true positive, ����������������� false positive (wrong class) and ����������������� false negative (object not detected).

truck/bus classes. This could be expected due to the small num-
ber of available samples for these classes (see Table 1). Results
show that more training iteration improves the performance for
the inflatable pool class. However, it decreases the performance
for the other classes due to overfitting. They also show that, de-
spite their large diversities, tents with sleeping functions can be
distinguished from similar objects classes such as large tents,
pavilions, awnings, tarpaulins, and sun sails with a high accu-
racy. In addition, it can be seen that camping vehicles with
a sleeping function can be distinguished from other vehicle

classes with a relatively high level of confidence. In order to
better analyse the correlation of the performance with the ob-
ject sizes, in Table 3, we show the average precision for large
(APBox

l ), medium (APBox
m ) and small (APBox

s ) objects. Ac-
cording to the results, small objects are harder to be detected
and segmented in comparison to the larger ones. This is due to
their smaller number of samples in our dataset as well as their
complex features resembling those of the other classes. This
can be confirmed by analysing false positives in Figure 4. This
figure demonstrates the performance for the best Mask-RCNN
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configuration on the tent and vehicle categories of the DLR-
AerialTent test set. The diagrams on the left side show the cu-
mulative fraction of detections which were classified correctly
(Cor), or represent false positive classifications due to poor lo-
calization (Loc), or due to confusion with similar (Sim), or with
other (Oth) categories, or with the background (BG). The solid
red line indicates the change of recall with the strong criteria
of 0.5 (jaccard overlap) by increasing detection numbers. The
dashed red line reflects the weak criteria of 0.1 (jaccard over-
lap). The diagrams on the right side indicate the distribution of
top-ranked false positive factors.

We have carried out such analysis for all classes; however, for
the sake of space, we merge the tent, pavilion, large-tents and
awning classes and the small-vehicle, caravan, camper, trailer
and truck/bus classes. In both cases, similarity and confusion
with objects from other classes can be considered as the main
reason for the false positives. Figure 5 shows also some ex-
amples of the visual output for the mask segmentation in the
DLR-AerialTent test set.

7. CONCLUSION AND FUTURE WORKS

In this paper, we present a proof-of-concept that it is feasible to
distinguish tents based on their functionalities on camp sites.
We introduce the first dataset for this application, which we
use to train an instance-wise segmentation algorithm of Mask-
RCNN with multiple configuration. The results show promis-
ing outputs for the most important categories despite low per-
formance for a few classes. From the operational point of view,
results of this study can support future developments and im-
prove monitoring systems for area occupancy and passability of
rescue routes during large-scale events. With the help of the ob-
ject classes, the number of people and their distribution can be
estimated by assigning specific, empirically determined values
to the classes. This step, as well as the evaluation of the results,
will follow this study. Additionally, we will investigate more
recent network architectures and will work on developing dedi-
cated algorithms for this task to achieve better performance. An
expansion to analyse data of temporary refugee camps, as well
as the use of satellite data, is being considered.
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