Njieutcheu Tassi, Cedrique Rovile (2019) Bayesian Convolutional Neural Network: Robustly Quantify Uncertainty for Misclassifications Detection. In: Communications in Computer and Information Science, Seiten 118-132. Springer, Cham. Third Mediterranean Conference on Pattern Recognition and Artificial Intelligence, 2019-12-22 - 2019-12-23, Türkey. doi: 10.1007/978-3-030-37548-5_10. ISBN 978-303032422-3. ISSN 1865-0929.
PDF
- Nur DLR-intern zugänglich
945kB |
Offizielle URL: https://link.springer.com/chapter/10.1007/978-3-030-37548-5_10#citeas
Kurzfassung
For safety and mission critical systems relying on Convolutional Neural Networks (CNNs), it is crucial to avoid incorrect predictions that can cause accident or financial crisis. This can be achieved by quantifying and interpreting the predictive uncertainty. Current methods for uncertainty quantification rely on Bayesian CNNs that approximate Bayesian inference via dropout sampling. This paper investigates different dropout methods to robustly quantify the predictive uncertainty for misclassifications detection. Specifically, the following questions are addressed: In which layers should activations be sampled? Which dropout sampling mask should be used? What dropout probability should be used? How to choose the number of ensemble members? How to combine ensemble members? How to quantify the classification uncertainty? To answer these questions, experiments were conducted on three datasets using three different network architectures. Experimental results showed that the classification uncertainty is best captured by averaging the predictions of all stochastic CNNs sampled from the Bayesian CNN and by validating the predictions of the Bayesian CNN with three uncertainty measures, namely the predictive confidence, predictive entropy and standard deviation thresholds. The results showed further that the optimal dropout method specified through the sampling location, sampling mask, inference dropout probability, and number of stochastic forward passes depends on both the dataset and the designed network architecture. Notwithstanding this, I proposed to sample inputs to max pooling layers with a cascade of Multiplicative Gaussian Mask (MGM) followed by Multiplicative Bernoulli Spatial Mask (MBSM) to robustly quantify the classification uncertainty, while keeping the loss in performance low.
elib-URL des Eintrags: | https://elib.dlr.de/144154/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | Bayesian Convolutional Neural Network: Robustly Quantify Uncertainty for Misclassifications Detection | ||||||||
Autoren: |
| ||||||||
Datum: | 18 Dezember 2019 | ||||||||
Erschienen in: | Communications in Computer and Information Science | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Nein | ||||||||
DOI: | 10.1007/978-3-030-37548-5_10 | ||||||||
Seitenbereich: | Seiten 118-132 | ||||||||
Verlag: | Springer, Cham | ||||||||
Name der Reihe: | Pattern Recognition and Artificial Intelligence | ||||||||
ISSN: | 1865-0929 | ||||||||
ISBN: | 978-303032422-3 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Convolutional Neural Networks (CNNs) Bayesian CNNs Dropout sampling Uncertainty quantification Uncertainty quality | ||||||||
Veranstaltungstitel: | Third Mediterranean Conference on Pattern Recognition and Artificial Intelligence | ||||||||
Veranstaltungsort: | Türkey | ||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||
Veranstaltungsbeginn: | 22 Dezember 2019 | ||||||||
Veranstaltungsende: | 23 Dezember 2019 | ||||||||
Veranstalter : | The Departement of Computer Engeneering, Istanbul Sabahattin Zaim University | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Sicherstellung der Informationsqualität in KI-Systemen (SIQKIS) | ||||||||
Standort: | Berlin-Adlershof | ||||||||
Institute & Einrichtungen: | Institut für Optische Sensorsysteme > Echtzeit-Datenprozessierung | ||||||||
Hinterlegt von: | Njieutcheu Tassi, Cedrique Rovile | ||||||||
Hinterlegt am: | 30 Sep 2021 09:02 | ||||||||
Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags